992 resultados para iterative method


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A numerical comparison is performed between three methods of third order with the same structure, namely BSC, Halley’s and Euler–Chebyshev’s methods. As the behavior of an iterative method applied to a nonlinear equation can be highly sensitive to the starting points, the numerical comparison is carried out, allowing for complex starting points and for complex roots, on the basins of attraction in the complex plane. Several examples of algebraic and transcendental equations are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A transferência de energia térmica da superfície corporal para a água é provavelmente o aspecto mais importante do equilíbrio térmico em mamíferos marinhos, mas os respectivos cálculos dependem do conhecimento da temperatura da superfície, T S, cuja medição direta em animais em liberdade constitui um problema difícil de resolver. Um método iterativo é proposto para a predição de T S de cetáceos em liberdade, a partir da temperatura corporal profunda, da velocidade de deslocamento e da temperatura e propriedades termodinâmicas da água.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo Simulation procedure.Program summaryTitle of program: STATFLUXCatalogue identifier: ADYS_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneComputer for which the program is designed and others on which it has been tested: Micro-computer with Intel Pentium III, 3.0 GHzInstallation: Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, BrazilOperating system: Windows 2000 and Windows XPProgramming language used: Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program.Memory, required to execute with typical data: 8 Mbytes of RAM memory and 100 MB of Hard disk memoryNo. of bits in a word: 16No. of lines in distributed program, including test data, etc.: 6912No. of bytes in distributed Program, including test data, etc.: 229 541Distribution format: tar.gzNature of the physical problem: the investigation of transport mechanisms for radioactive substances, through environmental pathways, is very important for radiological protection of populations. One such pathway, associated with the food chain, is the grass-animal-man sequence. The distribution of trace elements in humans and laboratory animals has been intensively studied over the past 60 years [R.C. Pendlenton, C.W. Mays, R.D. Lloyd, A.L. Brooks, Differential accumulation of iodine-131 from local fallout in people and milk, Health Phys. 9 (1963) 1253-1262]. In addition, investigations on the incidence of cancer in humans, and a possible causal relationship to radioactive fallout, have been undertaken [E.S. Weiss, M.L. Rallison, W.T. London, W.T. Carlyle Thompson, Thyroid nodularity in southwestern Utah school children exposed to fallout radiation, Amer. J. Public Health 61 (1971) 241-249; M.L. Rallison, B.M. Dobyns, F.R. Keating, J.E. Rall, F.H. Tyler, Thyroid diseases in children, Amer. J. Med. 56 (1974) 457-463; J.L. Lyon, M.R. Klauber, J.W. Gardner, K.S. Udall, Childhood leukemia associated with fallout from nuclear testing, N. Engl. J. Med. 300 (1979) 397-402]. From the pathways of entry of radionuclides in the human (or animal) body, ingestion is the most important because it is closely related to life-long alimentary (or dietary) habits. Those radionuclides which are able to enter the living cells by either metabolic or other processes give rise to localized doses which can be very high. The evaluation of these internally localized doses is of paramount importance for the assessment of radiobiological risks and radiological protection. The time behavior of trace concentration in organs is the principal input for prediction of internal doses after acute or chronic exposure. The General Multiple-Compartment Model (GMCM) is the powerful and more accepted method for biokinetical studies, which allows the calculation of concentration of trace elements in organs as a function of time, when the flow parameters of the model are known. However, few biokinetics data exist in the literature, and the determination of flow and transfer parameters by statistical fitting for each system is an open problem.Restriction on the complexity of the problem: This version of the code works with the constant volume approximation, which is valid for many situations where the biological half-live of a trace is lower than the volume rise time. Another restriction is related to the central flux model. The model considered in the code assumes that exist one central compartment (e.g., blood), that connect the flow with all compartments, and the flow between other compartments is not included.Typical running time: Depends on the choice for calculations. Using the Derivative Method the time is very short (a few minutes) for any number of compartments considered. When the Gauss-Marquardt iterative method is used the calculation time can be approximately 5-6 hours when similar to 15 compartments are considered. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An iterative Neumann series method, employing a real auxiliary scattering integral equation, is used to calculate scattering lengths and phase shifts for the atomic Yukawa and exponential potentials. For these potentials the original Neumann series diverges. The present iterative method yields results that are far better, in convergence, stability and precision, than other momentum space methods. Accurate result is obtained in both cases with an estimated error of about 1 in 10(10) after some 8-10 iterations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

En esta tesis, el método de estimación de error de truncación conocido como restimation ha sido extendido de esquemas de bajo orden a esquemas de alto orden. La mayoría de los trabajos en la bibliografía utilizan soluciones convergidas en mallas de distinto refinamiento para realizar la estimación. En este trabajo se utiliza una solución en una única malla con distintos órdenes polinómicos. Además, no se requiere que esta solución esté completamente convergida, resultando en el método conocido como quasi-a priori T-estimation. La aproximación quasi-a priori estima el error mientras el residuo del método iterativo no es despreciable. En este trabajo se demuestra que algunas de las hipótesis fundamentales sobre el comportamiento del error, establecidas para métodos de bajo orden, dejan de ser válidas en esquemas de alto orden, haciendo necesaria una revisión completa del comportamiento del error antes de redefinir el algoritmo. Para facilitar esta tarea, en una primera etapa se considera el método conocido como Chebyshev Collocation, limitando la aplicación a geometrías simples. La extensión al método Discontinuouos Galerkin Spectral Element Method presenta dificultades adicionales para la definición precisa y la estimación del error, debidos a la formulación débil, la discretización multidominio y la formulación discontinua. En primer lugar, el análisis se enfoca en leyes de conservación escalares para examinar la precisión de la estimación del error de truncación. Después, la validez del análisis se demuestra para las ecuaciones incompresibles y compresibles de Euler y Navier Stokes. El método de aproximación quasi-a priori r-estimation permite desacoplar las contribuciones superficiales y volumétricas del error de truncación, proveyendo información sobre la anisotropía de las soluciones así como su ratio de convergencia con el orden polinómico. Se demuestra que esta aproximación quasi-a priori produce estimaciones del error de truncación con precisión espectral. ABSTRACT In this thesis, the τ-estimation method to estimate the truncation error is extended from low order to spectral methods. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, only one grid with different polynomial orders is used in this work. Furthermore, a non timeconverged solution is used resulting in the quasi-a priori τ-estimation method. The quasi-a priori approach estimates the error when the residual of the time-iterative method is not negligible. It is shown in this work that some of the fundamental assumptions about error tendency, well established for low order methods, are no longer valid in high order schemes, making necessary a complete revision of the error behavior before redefining the algorithm. To facilitate this task, the Chebyshev Collocation Method is considered as a first step, limiting their application to simple geometries. The extension to the Discontinuous Galerkin Spectral Element Method introduces additional features to the accurate definition and estimation of the error due to the weak formulation, multidomain discretization and the discontinuous formulation. First, the analysis focuses on scalar conservation laws to examine the accuracy of the estimation of the truncation error. Then, the validity of the analysis is shown for the incompressible and compressible Euler and Navier Stokes equations. The developed quasi-a priori τ-estimation method permits one to decouple the interfacial and the interior contributions of the truncation error in the Discontinuous Galerkin Spectral Element Method, and provides information about the anisotropy of the solution, as well as its rate of convergence in polynomial order. It is demonstrated here that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The so-called parallel multisplitting nonstationary iterative Model A was introduced by Bru, Elsner, and Neumann [Linear Algebra and its Applications 103:175-192 (1988)] for solving a nonsingular linear system Ax = b using a weak nonnegative multisplitting of the first type. In this paper new results are introduced when A is a monotone matrix using a weak nonnegative multisplitting of the second type and when A is a symmetric positive definite matrix using a P -regular multisplitting. Also, nonstationary alternating iterative methods are studied. Finally, combining Model A and alternating iterative methods, two new models of parallel multisplitting nonstationary iterations are introduced. When matrix A is monotone and the multisplittings are weak nonnegative of the first or of the second type, both models lead to convergent schemes. Also, when matrix A is symmetric positive definite and the multisplittings are P -regular, the schemes are also convergent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the Cauchy problem for the Laplace equation in a quadrant (quarter-plane) containing a bounded inclusion. Given the values of the solution and its derivative on the edges of the quadrant the solution is reconstructed on the boundary of the inclusion. This is achieved using an alternating iterative method where at each iteration step mixed boundary value problems are being solved. A numerical method is also proposed and investigated for the direct mixed problems reducing these to integral equations over the inclusion. Numerical examples verify the efficiency of the proposed scheme.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kozlov & Maz'ya (1989, Algebra Anal., 1, 144–170) proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems. However, in many applied problems, operators appear that do not satisfy these requirements, e.g. Helmholtz-type operators. Therefore, in this study, an alternating procedure for solving Cauchy problems for self-adjoint non-coercive elliptic operators of second order is presented. A convergence proof of this procedure is given.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An iterative method for computing the channel capacity of both discrete and continuous input, continuous output channels is proposed. The efficiency of new method is demonstrated in comparison with the classical Blahut - Arimoto algorithm for several known channels. Moreover, we also present a hybrid method combining advantages of both the Blahut - Arimoto algorithm and our iterative approach. The new method is especially efficient for the channels with a priory unknown discrete input alphabet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a detailed analysis of the application of a multi-scale Hierarchical Reconstruction method for solving a family of ill-posed linear inverse problems. When the observations on the unknown quantity of interest and the observation operators are known, these inverse problems are concerned with the recovery of the unknown from its observations. Although the observation operators we consider are linear, they are inevitably ill-posed in various ways. We recall in this context the classical Tikhonov regularization method with a stabilizing function which targets the specific ill-posedness from the observation operators and preserves desired features of the unknown. Having studied the mechanism of the Tikhonov regularization, we propose a multi-scale generalization to the Tikhonov regularization method, so-called the Hierarchical Reconstruction (HR) method. First introduction of the HR method can be traced back to the Hierarchical Decomposition method in Image Processing. The HR method successively extracts information from the previous hierarchical residual to the current hierarchical term at a finer hierarchical scale. As the sum of all the hierarchical terms, the hierarchical sum from the HR method provides an reasonable approximate solution to the unknown, when the observation matrix satisfies certain conditions with specific stabilizing functions. When compared to the Tikhonov regularization method on solving the same inverse problems, the HR method is shown to be able to decrease the total number of iterations, reduce the approximation error, and offer self control of the approximation distance between the hierarchical sum and the unknown, thanks to using a ladder of finitely many hierarchical scales. We report numerical experiments supporting our claims on these advantages the HR method has over the Tikhonov regularization method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider the Cauchy problem for the Laplace equation in 3-dimensional doubly-connected domains, that is the reconstruction of a harmonic function from knowledge of the function values and normal derivative on the outer of two closed boundary surfaces. We employ the alternating iterative method, which is a regularizing procedure for the stable determination of the solution. In each iteration step, mixed boundary value problems are solved. The solution to each mixed problem is represented as a sum of two single-layer potentials giving two unknown densities (one for each of the two boundary surfaces) to determine; matching the given boundary data gives a system of boundary integral equations to be solved for the densities. For the discretisation, Weinert's method [24] is employed, which generates a Galerkin-type procedure for the numerical solution via rewriting the boundary integrals over the unit sphere and expanding the densities in terms of spherical harmonics. Numerical results are included as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The image reconstruction using the EIT (Electrical Impedance Tomography) technique is a nonlinear and ill-posed inverse problem which demands a powerful direct or iterative method. A typical approach for solving the problem is to minimize an error functional using an iterative method. In this case, an initial solution close enough to the global minimum is mandatory to ensure the convergence to the correct minimum in an appropriate time interval. The aim of this paper is to present a new, simple and low cost technique (quadrant-searching) to reduce the search space and consequently to obtain an initial solution of the inverse problem of EIT. This technique calculates the error functional for four different contrast distributions placing a large prospective inclusion in the four quadrants of the domain. Comparing the four values of the error functional it is possible to get conclusions about the internal electric contrast. For this purpose, initially we performed tests to assess the accuracy of the BEM (Boundary Element Method) when applied to the direct problem of the EIT and to verify the behavior of error functional surface in the search space. Finally, numerical tests have been performed to verify the new technique.