954 resultados para isotopic change rate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports the results of a parametric CFD study on idealized city models to investigate the potential of slope flow in ventilating a city located in a mountainous region when the background synoptic wind is absent. Examples of such a city include Tokyo in Japan, Los Angeles and Phoenix in the US, and Hong Kong. Two types of buoyancy-driven flow are considered, i.e., slope flow from the mountain slope (katabatic wind at night and anabatic wind in the daytime), and wall flow due to heated/cooled urban surfaces. The combined buoyancy-driven flow system can serve the purpose of dispersing the accumulated urban air pollutants when the background wind is weak or absent. The microscopic picture of ventilation performance within the urban structures was evaluated in terms of air change rate (ACH) and age of air. The simulation results reveal that the slope flow plays an important role in ventilating the urban area, especially in calm conditions. Katabatic flow at night is conducive to mitigating the nocturnal urban heat island. In the present parametric study, the mountain slope angle and mountain height are assumed to be constant, and the changing variables are heating/cooling intensity and building height. For a typical mountain of 500 m inclined at an angle of 20° to the horizontal level, the interactive structure is very much dependent on the ratio of heating/cooling intensity as well as building height. When the building is lower than 60 m, the slope wind dominates. When the building is as high as 100 m, the contribution from the urban wall flow cannot be ignored. It is found that katabatic wind can be very beneficial to the thermal environment as well as air quality at the pedestrian level. The air change rate for the pedestrian volume can be as high as 300 ACH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relative contribution of the main mechanisms that control indoor air quality in residential flats was examined. Indoor and outdoor concentration measurements of different type pollutants (black carbon, SO2, O3, NO, NO2,) were monitored in three naturally ventilated residential flats in Athens, Greece. At each apartment, experiments were conducted during the cold as well as during the warm period of the year. The controlling parameters of transport and deposition mechanisms were calculated from the experimental data. Deposition rates of the same pollutant differ according to the site (different construction characteristics) and to the measuring period for the same site (variations in relative humidity and differences in furnishing). Differences in the black carbon deposition rates were attributed to different black carbon size distributions. The highest deposition rates were observed for O3 in the residential flats with the older construction and the highest humidity levels. The calculated parameters as well as the measured outdoor concentrations were used as input data of a one-compartment indoor air quality model, and the indoor concentrations, the production, and loss rates of the different pollutants were calculated. The model calculated concentrations are in good agreement with the measured values. Model simulations revealed that the mechanism that mainly affected the change rate of indoor black carbon concentrations was the transport from the outdoor environment, while the removal due to deposition was insignificant. During model simulations, it was also established that that the change rate of SO2 concentrations was governed by the interaction between the transport and the deposition mechanisms while NOX concentrations were mainly controlled through photochemical reactions and the transport from outdoors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many modern cities locate in the mountainous areas, like Hong Kong, Phoenix City and Los Angles. It is confirmed in the literature that the mountain wind system developed by differential heating or cooling can be very beneficial in ventilating the city nearby and alleviating the UHI effect. However, the direct interaction of mountain wind with the natural-convection circulation due to heated urban surfaces has not been studied, to our best knowledge. This kind of unique interaction of two kinds of airflow structures under calm and neutral atmospheric environment is investigated in this paper by CFD approach. A physical model comprising a simple mountain and three long building blocks (forming two street canyons) is firstly developed. Different airflow structures are identified within the conditions of different mountain-building height ratios (R=Hm/Hb) by varying building height but fixing mountain height. It is found that the higher ventilation rate in the street canyons is expected in the cases of smaller mountain-building ratios, indicating the stronger natural convection due to increasing heated building surfaces. However, there is the highest air change rate (ACH) in the lowest-building-height case and most of the air is advective into the street canyon through the top open area, highlighting the important role played by the mountain wind. In terms of the ventilation efficiency, it is shown that the smallest R case enjoys the best air change efficiency followed by the highest R case, while the worst ventilative street canyons occur at the middle R case. In the end, a gap across the streets is introduced in the modeling. The existence of the gap can greatly channel the mountain wind and distribute the air into streets nearby. Thus the ACH can be doubled and air quality can be significantly improved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three-dimensional computational simulations are performed to examine indoor environment and micro-environment around human bodies in an office in terms of thermal environment and air quality. In this study, personal displacement ventilation (PDV), including two cases with all seats taken and two middle seats taken, is compared with overall displacement ventilation (ODV) of all seats taken under the condition that supply temperature is 24℃ and air change rate is 60 l/s per workstation. When using PDV, temperature stratification, the characteristic of displacement ventilation, is obviously observed at the position of occupant’s head and clearer in the case with all seats taken. Verticalertical ertical temperature temperature temperature temperature temperature differences below height of the head areare under under under 2℃ in two cases in two cases in two cases in two cases in two cases in two cases in two cases in two cases with all seats taken,and the temperature with PDV is higher than that with ODV. Verticalertical ertical temperature temperature temperature temperature temperature temperature difference is under 3 under 3under 3 under 3℃ in the case in the case in the case in the case in the case in the case in the case with two middle seats taken. CO2 concentration is lower th is lower th is lower this lower this lower than 2 g/man 2 g/m an 2 g/man 2 g/man 2 g/man 2 g/m 3 in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. The results indicate that PDV can be used in the room with big change of occupants’ number to satisfy the need of thermal comfort and air quality. When not all seats are taken, designers should increase supply air requirement or reduce its temperature for thermal comfort. INDEX TERMS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable oxygen isotope composition of atmospheric precipitation (δ18Op) was scrutinized from 39 stations distributed over Switzerland and its border zone. Monthly amount-weighted δ18Op values averaged over the 1995–2000 period showed the expected strong linear altitude dependence (−0.15 to −0.22‰ per 100 m) only during the summer season (May–September). Steeper gradients (~ −0.56 to −0.60‰ per 100 m) were observed for winter months over a low elevation belt, while hardly any altitudinal difference was seen for high elevation stations. This dichotomous pattern could be explained by the characteristically shallower vertical atmospheric mixing height during winter season and provides empirical evidence for recently simulated effects of stratified atmospheric flow on orographic precipitation isotopic ratios. This helps explain "anomalous" deflected altitudinal water isotope profiles reported from many other high relief regions. Grids and isotope distribution maps of the monthly δ18Op have been calculated over the study region for 1995–1996. The adopted interpolation method took into account both the variable mixing heights and the seasonal difference in the isotopic lapse rate and combined them with residual kriging. The presented data set allows a point estimation of δ18Op with monthly resolution. According to the test calculations executed on subsets, this biannual data set can be extended back to 1992 with maintained fidelity and, with a reduced station subset, even back to 1983 at the expense of faded reliability of the derived δ18Op estimates, mainly in the eastern part of Switzerland. Before 1983, reliable results can only be expected for the Swiss Plateau since important stations representing eastern and south-western Switzerland were not yet in operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Profiles of Mo/total organic carbon (TOC) through the Lower Toarcian black shales of the Cleveland Basin, Yorkshire, United Kingdom, and the Posidonia shale of Germany and Switzerland reveal water mass restriction during the interval from late tenuicostatum Zone times to early bifrons Zone times, times which include that of the putative Early Toarcian oceanic anoxic event. The degree of restriction is revealed by crossplots of Mo and TOC concentrations for the Cleveland Basin, which define two linear arrays with regression slopes (ppm/%) of 0.5 and 17. The slope of 0.5 applies to sediment from the upper semicelatum and exaratum Subzones. This value, which is one tenth of that for modern sediments from the Black Sea (Mo/TOC regression slope 4.5), reveals that water mass restriction during this interval was around 10 times more severe than in the modern Black Sea; the renewal frequency of the water mass was between 4 and 40 ka. The Mo/TOC regression slope of 17 applies to the overlying falciferum and commune subzones: the value shows that restriction in this interval was less severe and that the renewal frequency of the water mass was between 10 and 130 years. The more restricted of the two intervals has been termed the Early Toarcian oceanic anoxic event but is shown to be an event caused by basin restriction local to NW Europe. Crossplots of Re, Os, and Mo against TOC show similar trends of increasing element concentration with increase in TOC but with differing slopes. Together with modeling of 187Os/188Os and d98Mo, the element/TOC trends show that drawdown of Re, Os, and Mo was essentially complete during upper semicelatum and exaratum Subzone times (Mo/TOC regression slope of 0.5). Drawdown sensitized the restricted water mass to isotopic change forced by freshwater mixing so that continental inputs of Re, Os, and Mo, via a low-salinity surface layer, created isotopic excursions of up to 1.3 per mil in d98Mo and up to 0.6 per mil for 187Os/188Os. Restriction thereby compromises attempts to date Toarcian black shales, and possibly all black shales, using Re-Os chronology and introduces a confounding influence in the attempts to use d98Mo and initial 187Os/188Os for palaeo-oceanographic interpretation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Lesser Antilles arc is a particularly interesting island arc because it is presently very active, it is located perpendicular to the South American continent and its chemical and isotopic compositions display a strong north-south gradient. While the presence in the south of a thick pile of sedimentary material coming from the old South American continent has long been suspected to explain the geochemical gradient, previous studies failed to demonstrate unambiguously a direct link between the arc lava compositions and the subducted sediment compositions. Here, we present new Nd, Sm, Th, U and Pb concentrations and Nd-Pb isotopic data for over 60 sediments from three sites located in the fore arc region of the Lesser Antilles arc. New data for DSDP Site 543 drill core located east of Dominica Island complement the data published by White et al. (1985, doi:10.1016/0016-7037(85)90082-1) and confirm their relatively uniform isotopic compositions (i.e., 206Pb/204Pb between 19.13 and 19.53). In contrast, data obtained on DSDP Site 144 located further south, on the edge of the South American Rise and on sediments from Barbados Island are much more variable (206Pb/204Pb ranges from 18.81 to 27.69). The very radiogenic Pb isotopic compositions are found in a 60 m thick black shale unit, which has no age equivalent in the Site 543 drill core. We interpret the peculiar composition of the southern sediments as being due to two factors, (a) the proximity of the South American craton, which contributes coarse grain old detrital material that does not travel far from the continental shelf, and (b) the presence of older sediments including the thick black shale unit formed during Oceanic Anoxic events 2 and 3. The north-south isotopic change known along the Lesser Antilles arc can be explained by the observed geographical changes in the composition of the subducted sediments. About 1% contamination of the mantle wedge by Site 543 sediments explains the composition of the northern islands while up to 10% sediments like those of Site 144 is required in the source of the southern island lavas. The presence of black shales in the subducted pile provides a satisfactory explanation for the very low Delta8/4 values that characterize the Lesser Antilles arc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Siwalik paleosol and Bengal Fan sediment samples were analyzed for the abundance and isotopic composition of n-alkanes in order to test for molecular evidence of the expansion of C4 grasslands on the Indian subcontinent. The carbon isotopic compositions of high-molecular-weight alkanes in both the ancient soils and sediments record a shift from low d13C values (ca. -30 per mil) to higher values (ca. -22 per mil) prior to 6 Ma. This shift is similar in magnitude to that recorded by paleosol carbonate and fossil teeth, and is consistent with a relatively rapid transition from dominantly C3 vegetation to an ecosystem dominated by C4 plants typical of semi-arid grasslands. The n-alkane values from our paleosol samples indicate that the isotopic change began as early as 9 Ma, reflecting either a growing contribution of C4 plants to a dominantly C3 biomass or a decrease in water availability to C3 plants. Molecular and isotopic analyses of other compounds, including n-alcohols and low-molecular weight n-alkanes indicate paleosol organic matter contains contributions from a mixture of sources, including vascular plants, algae and/or cyanobacteria and microorganisms. A range of inputs is likewise reflected in the isotopic composition of the total organic carbon from these samples. In addition, the n-alkanes from two samples show little evidence for pedegenic inputs and we suggest the compounds were derived instead from the paleosol's parent materials. We suggest the record of vegetation in ancient terrestrial ecosystems is better reconstructed using isotopic signatures of molecular markers, rather than bulk organic carbon. This approach provides a means of expanding the spatial and temporal records of C4 plant biomass which will help to resolve possible tectonic, climatic or biological controls on the rise of this important component of the terrestrial biosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pliocene changes in the vertical water mass structure of the western South Atlantic are inferred from changes in benthic foraminiferal assemblages and stable isotopes from DSDP Holes 516A, 517, and 518. Factor analysis of 34 samples from Site 518 reveals three distinct benthic foraminiferal assemblages that have been associated with specific subsurface water masses in the modern ocean. These include a Nuttalides umbonifera assemblage (Factor 1) associated with Antarctic Bottom Water (AABW), a Globocassidulina subglobosa-Uvigerina peregrina assemblage (Factor 2) associated with Circumpolar Deep Water (CPDW), and an Oridorsalis umbonatus-Epistominella exigua assemblage associated with North Atlantic Deep Water (NADW). Bathymetric gradients in d13C between Holes 516A (1313 m), 517 (2963 m), and 518 (3944 m) are calculated whenever possible to monitor the degree of similarity and/or difference in the apparent oxygen utilization (AOU) of water masses located at these depths during the Pliocene. Changes in bathymetric d13C gradients coupled with benthic foraminiferal assemblages record fundamental changes in the vertical water mass structure of the Vema Channel during the Pliocene from 4.1 to 2.7 Ma. At Site 518, the interval from 4.1 to 3.6 Ma is dominated by the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages. The d13C gradient between Holes 518 (3944 m) and 516A (1313 m) undergoes rapid oscillations during this interval though no permanent increase in the gradient is observed. However, d13C values at Site 518 are clearly lighter during this interval. These conditions may be related to increased bottom water activity associated with the re-establishment of the West Antarctic Ice Sheet in the late Gilbert Chron (-4.2 to 3.6 Ma) (Osborn et al., 1982). The interval from 3.6 to 3.2 Ma is marked by a dominance of the G. subglobosa-U. peregrina (Factor 2) assemblage and lack of a strong d13C gradient between Holes 518 (3944 m) and 516A (1313 m). We suggest that shallow circumpolar waters expanded to depths of a least 3944 m (Site 518) during this time. The most profound faunal and isotopic change occurs at 3.2 Ma, and is marked by dominance of the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages, a 1.1 per mil enrichment in d18O, and a large negative increase in the d13C gradient between Holes 518 and 516A. These changes at Site 518 record the vertical displacement of circumpolar waters by AABW and NADW. This change in vertical water mass structure at 3.2 Ma was probably related to a global cooling event and/or final closure of the Central American seaway. A comparison of the present-day d13C structure of the Vema Channel with a reconstruction between 3.2 and 2.7 Ma indicates that circulation patterns during this late Pliocene interval were similar to those of the modern western South Atlantic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the late Pleistocene, sapropels (layers of organic-carbon rich sediment) formed throughout the entire Eastern Mediterranean Basin in close association with glacial/interglacial transitions. The current theory for the mechanism of sapropel formation involves a density stratification of the water column, due to the invasion of a large quantity of low-saline water, which resulted in oxygen depletion of the bottom waters. Most workers believe that this low-salinity water was glacial meltwater that entered the Mediterranean via the Black Sea and a series of interconnected glacial lakes, but the suggestion also has been made that the freshwater originated from the Nile River. In this study the oxygen isotope values of planktonic foraminifera,Globigerinoides ruber, have been examined in six gravity cores and one piston core from the southern Levantine Basin, and compared with the oxygen isotope records ofG. ruber from other areas of the Eastern Mediterranean. This study deals mainly with the latest sapropel which was deposited approximately 7000 to 9000 years ago. Results indicate that Nile discharge probably does reduce salinities somewhat in the immediate area surrounding the mouth of the Nile, but this water is rapidly mixed with the highly saline waters of the easternmost Mediterranean. Using a mixing equation and surface water salinity limitations, an approximate oxygen isotope balance of surface waters was calculated for the time of latest sapropel deposition. This calculation shows that neither Nile River discharge nor Black Sea input (nor both together) are large enough to account for the large-scale oxygen isotope depletion associated with latest sapropel deposition in the Eastern Mediterranean. This suggests that part of the isotopic change at Termination I is probably due to increased surface water salinities during the last glacial maximum. In addition, evidence from the timing of sapropel 1 deposition and the dissolved oxygen balance indicates that deposition of the latest sapropel is associated with increased surface water production of biogenic material, as much as three times higher than that of present day.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La consistencia del trazado puede interpretarse como la relación entre las características geométricas de una carretera y lo que espera encontrar el conductor que circula por ella. Si hay una correspondencia entre estos dos aspectos, la conducción puede hacerse de modo continuo, sin sobresaltos, lo que incide favorablemente sobre la seguridad en la circulación. Si bien hay una serie de recomendaciones desde el punto de vista geométrico para obtener trazados consistentes, esto no siempre se logra, y sólo en los últimos años se ha iniciado el estudio de metodologías para evaluar ésto, tanto en vías existentes como en vías proyectadas. La mayor parte de estas metodologías sólo considera el trazado en planta, olvidándose del trazado en alzado y de la coordinación entre los mismos. En esta Tesis doctoral se ha desarrollado una metodología para evaluar la consistencia del trazado en carreteras interurbanas de dos carriles que considera dichos aspectos. Para ello, se hizo un análisis exhaustivo de los índices de trazado, los cuales evalúan las características geométricas en planta y en alzado. Los índices se correlacionaron con la accidentalidad, para determinar cuál de ellos tiene mayor incidencia, encontrándose que es el cambio de curvatura vertical (VCCR); a este índice se le estableció un rango de calificación. Como elemento de evaluación complementario de análisis se seleccionó el perfil de velocidades de operación, procedimiento que ha sido probado en diferentes investigaciones, y del cual se desarrolló un modelo aplicado a Colombia. Para la coordinación de trazados en planta y alzado se evaluaron diferentes combinaciones geométricas, algunas de las cuales generaron reapariciones del trazado. Se ha definido un nuevo índice (Irt) que permite determinar numéricamente la posibilidad de que se presente esta situación, indeseable desde el punto de vista de la seguridad vial. La combinación de estos tres elementos permite una evaluación integral de los diferentes aspectos que inciden sobre la consistencia del trazado de una carretera. La metodología desarrollada se aplicó en el estudio de consistencia del trazado en algunas carreteras españolas y colombianas, ubicadas en distintos tipos de terreno. ABSTRACT Geometric Design Consistency can be defined as the relationship between the geometric characteristics of a road and what the driver expects to find when driving. If there is a correspondence between these two aspects, driving is smoother and unexpected events are minimized, which increases traffic safety conditions. Although from the geometric point of view there are several recommendations to ensure consistent designs, this is not always successfully applied. The study of methods to evaluate design consistency in existing and future routes has only begun in recent years. Most existing methods only consider the horizontal alignment of the road and overlook both the vertical alignment and the coordination that must exist between the vertical and the horizontal. The present Doctoral Thesis proposes a method to evaluate the geometric design consistency of a two-lane rural highway which considers all three of these aspects: the horizontal alignment, the vertical alignment and the coordination that must exist between them. In order to achieve this, several different alignment indices, that evaluate horizontal and vertical geometric characteristics, were thoroughly analyzed to determine their correlation with traffic accidents. The Vertical Curvature Change Rate (VCCR) index showed the highest correlation, and rating thresholds for this index have been established. To complement the evaluation, the operating speed profile, was chosen. This procedure has been extensively tested by several researchers. An operating speed prediction model adapted to Colombia was developed. To study the coordination between the horizontal and the vertical alignments of the road, several geometric combinations of the two were used. Some of these combinations generate undesirable losses of visibility. For this reason, a new index (Irt) was defined to numerically detect those cases, which are undesirable from the point of view of traffic safety. The combination of these three factors allows a comprehensive evaluation of the different aspects that affect the geometric design consistency of a highway. The methodology was applied to some Spanish and Colombian roads located in different types of terrain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Regional/global-scale information on coastline rates of change and trends is extremely valuable, but national-scale studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users. The main objective of this work is to present the first systematic, global and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy. The methodology used quantifies coastline evolution using an unique and robust coastline indicator (the foredune toe), which is independent of short-term changes. The dataset presented comprises: 1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune systems coastline, both optimized for working at 1:50 000 scale or smaller, and 2) one polyline set representing long-term change rates between 1958 and 2010, estimated at each 250 m. Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m/year for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cell and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho - Torreira and Costa Nova - Praia da Mira, both at sub-cell 1b; Cova Gala - Leirosa, at sub-cell 1c and Cova do Vapor - Costa da Caparica, at cell 4. Cells 1 and 4 exhibit a history of major human interventions interfering with the coastal system, many of which originated and maintained a sediment deficit. In contrast, cells 5 and 6 have been less intervened and show stable or moderate accretion behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding how biodiversity spatially distribute over both the short term and long term, and what factors are affecting the distribution, are critical for modeling the spatial pattern of biodiversity as well as for promoting effective conservation planning and practices. This dissertation aims to examine factors that influence short-term and long-term avian distribution from the geographical sciences perspective. The research develops landscape level habitat metrics to characterize forest height heterogeneity and examines their efficacies in modelling avian richness at the continental scale. Two types of novel vegetation-height-structured habitat metrics are created based on second order texture algorithms and the concepts of patch-based habitat metrics. I correlate the height-structured metrics with the richness of different forest guilds, and also examine their efficacies in multivariate richness models. The results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of two forest bird guilds. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness. The second and the third projects focus on analyzing centroids of avian distributions, and testing hypotheses regarding the direction and speed of these shifts. I first showcase the usefulness of centroids analysis for characterizing the distribution changes of a few case study species. Applying the centroid method on 57 permanent resident bird species, I show that multi-directional distribution shifts occurred in large number of studied species. I also demonstrate, plain birds are not shifting their distribution faster than mountain birds, contrary to the prediction based on climate change velocity hypothesis. By modelling the abundance change rate at regional level, I show that extreme climate events and precipitation measures associate closely with some of the long-term distribution shifts. This dissertation improves our understanding on bird habitat characterization for species richness modelling, and expands our knowledge on how avian populations shifted their ranges in North America responding to changing environments in the past four decades. The results provide an important scientific foundation for more accurate predictive species distribution modeling in future.