991 resultados para iron-rich granules
Resumo:
In this paper, synthesis of the Fe55Pt45/Fe3O4 core/shell structured nanoparticles using the modified polyol process combined with the seed-mediated growth method is reported. Iron oxide shell thickness was tuned controlling the Fe(acac)(3)/FePt seeds in the reaction medium. Annealing of the core/shell structure leads to iron-rich layer formation around the hard FePt phase in the nanoparticle core. However, the 2 nm Fe3O4 shell thickness seems to be the limit to obtain the enhanced magnetization close to the alpha-Fe and preserving an iron oxide shell after annealing at 500 degrees C for 30 min in a reducing atmosphere. The presence of both the oxide layer on nanoparticle surface and an intermediate iron-rich FePt layer after annealing promote strong decreases in the coercive field of the 2-nm-oxide shell thickness. These annealed nanoparticles were functionalized with dextran, presenting the enhanced characteristics for biomedical applications such as higher magnetization, very low coercivity, and a slightly iron oxide passivated layer, which leads an easy functionalization and decreases the nanoparticle toxicity.
Resumo:
The local and medium-range structures of siloxane-POE hybrids doped with Fe(III) ions and prepared by the sol-gel process were investigated by X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) and small-angle X-ray scattering (SAXS), respectively. The experimental results show that the structure of these composites depends on the doping level. EXAFS data reveal that, for low doping levels ([O]/[Fe] > 40, oxygens being of the ether-type of the POE chains), Fe(III) ions are surrounded essentially by a shell of chlorine atoms, suggesting the formation of FeCl4- anions. At high doping levels ([O]/[Fe] < 20), Fe(III) ions interacts mainly with oxygen atoms and form FeOx species. The relative proportion of FeOx species increases with iron concentration, this result being consistent with the results of SAXS measurements showing that increasing iron doping induces the formation of iron-rich nanodomains embedded in the polymer matrix.
Resumo:
It has been reported that the inositol 1,4,5-trisphosphate receptor subtype 3 is expressed in islet cells and is localized to both insulin and somatostatin granules [Blondel, O., Moody, M. M., Depaoli, A. M., Sharp, A. H., Ross, C. A., Swift, H. & Bell, G. I. (1994) Proc. Natl. Acad. Sci. USA 91, 7777-7781]. This subcellular localization was based on electron microscope immunocytochemistry using antibodies (affinity-purified polyclonal antiserum AB3) directed to a 15-residue peptide of rat inositol trisphosphate receptor subtype 3. We now show that these antibodies cross-react with rat, but not human, insulin. Accordingly, the anti-inositol trisphosphate receptor subtype 3 (AB3) antibodies label electron dense cores of mature (insulin-rich) granules of rat pancreatic beta cells, and rat granule labeling was blocked by preabsorption of the AB3 antibodies with rat insulin. The immunostaining of immature, Golgi-associated proinsulin-rich granules with AB3 antibodies was very weak, indicating that cross-reactivity is limited to the hormone and not its precursor. Also, the AB3 antibodies labeled pure rat insulin crystals grown in vitro but failed to stain crystals grown from pure human insulin. By immunoprecipitation, the antibodies similarly displayed a higher affinity for rat than for human insulin. We could not confirm the labeling of somatostatin granules using AB3 antibodies.
Resumo:
Fe-Mn-concretions of a spheroidal type were found according to electron probe determinations to consist of alternating iron- and manganese-rich layers. This pattern was ascribed to seasonal variations in the physico-chemical conditions governing the precipitation of the hydrous oxides of iron and manganese. Calculations based on the rhythmic growth of the concretions investigated gave a mean accumulation rate of 0.15-0.20 mm/yr. The rather high phosphorus content (average 3.5 % P2O5) of the concretions was found to be concentrated in the iron-rich layers, probably as a result of the scavenging effect of ferric hydroxide.
Resumo:
Recent research suggest that the iron-rich intermetallic phases, such as alpha-FeAl15(Fe,Mn)(3)Si-2 and beta-Fe Al5FeSi, nucleate on oxide films entrained in aluminum casting alloys. This is evidenced by the presence of crack-like defects within these iron-rich intermetallics. In an attempt to verify the role of oxides in nucleating iron-rich intermetallics, experiments have been conducted under conditions where in-situ entrained oxide films and deliberately added oxide particles were present. Iron-rich intermetallics are observed to be associated with the oxides in the final microstructure, and crack-like defects are often observed in the beta-Fe plates. The physical association of the Fe-rich intermetallic phases with these solid oxides, either formed in situ or added, is in accordance with the mechanism suggesting that iron-rich intermetallics nucleate upon the wetted sides of double oxide films.
Resumo:
The microbial demand for iron is often met by the elaboration of siderophores into the surrounding medium and expression of cognate outer membrane receptors for the ferric siderophore complexes. Conditions of iron limitation, such as those encountered in vivo, cause Pseudomonas aeruginosa to express two high-affinity iron-uptake systems based on pyoverdin and pyochelin. These systems will operate both in the organism's natural habitat, soil and water, where the solubility of iron at neutral pH is extremely low, and in the human host where the availability of free iron is too low to sustain bacterial growth due to the iron-binding glycoproteins transferrin and lactoferrin. Cross-feeding and radiolabelled iron uptake experiments demonstrated that pyoverdin biosynthesis and uptake were highly heterogeneous amongst P.aeruginosa strains, that growth either in the presence of pyoverdin or pyochelin resulted in induction of specific IROMPs, and that induction of iron uptake is siderophore-specific. The P.aeruginosa Tn5 mutant PH1 is deficient in ferripyoverdin uptake and resistant to pyocin Sa, suggesting that the site of interaction of pyocin Sa is a ferripyoverdin receptor. Additional Tn5 mutants appeared to exploit different strategies to achieve pyocin Sa-resistance, involving modifications in expression of pyoverdin-mediated iron uptake, indicating that complex regulatory systems exist to enable these organisms to compete effectively for iron. Modulation of expression of IROMPs prompted a study of the mechanism of uptake of a semi-synthetic C(7) α-formamido substituted cephalosporin BRL 41897A. Sensitivity to this agent correlated with expression of the 75 kDa ferri-pyochelin receptor and demonstrated the potential of high-affinity iron uptake systems for targeting of novel antibiotics. Studies with ferri-pyoverdin uptake-deficient mutant PH1 indicated that expression of outer membrane protein G (OprG), which is usually expressed under iron-rich conditions and repressed under iron-deficient conditions, was perturbed. Attempts were made to clone the oprG gene using a degenerate probe based on the N-terminal amino acid sequence. A strongly hybridising HindIll restriction fragment was cloned and sequenced, but failed to reveal an open reading frame correspondmg to OprG. However, there appears to be good evidence that a part of the gene codmg for the hydrophilic membrane-associated ATP-binding component of a hitherto uncharacterised periplasmic- binding-protein-dependent transport system has been isolated. The full organisation and sequence of the operon, and substrate for this putative transport system, are yet: to be elucidated,
Resumo:
We completed a synoptic survey of iron, phosphorus, and sulfur concentrations in shallow marine carbonate sediments from south Florida. Total extracted iron concentrations typically were 50 μmol g-1 dry weight (DW) and tended to decrease away from the Florida mainland, whereas total extracted phosphorus concentrations mostly were 10 μmol g-1 DW and tended to decrease from west to east across Florida Bay. Concentrations of reduced sulfur compounds, up to 40 μmol g-1 DW, tended to covary with sediment iron concentrations, suggesting that sulfide mineral formation was iron-limited. An index of iron availability derived from sediment data was negatively correlated with chlorophyll a concentrations in surface waters, demonstrating the close coupling of sediment-water column processes. Eight months after applying a surface layer of iron oxide granules to experimental plots, sediment iron, phosphorus, and sulfur were elevated to a depth of 10 cm relative to control plots. Biomass of the seagrass Thalassia testudinum was not different between control and iron addition plots, but individual shoot growth rates were significantly higher in experimental plots after 8 months. Although the iron content of leaf tissues was significantly higher from iron addition plots, no difference in phosphorus content of T. testudinum leaves was observed. Iron addition altered plant exposure to free sulfide, documented by a significantly higher δ34S of leaf tissue from experimental plots relative to controls. Iron as a buffer to toxic sulfides may promote individual shoot growth, but phosphorus availability to plants still appears to limit production in carbonate sediments.
Resumo:
Ferromanganese concretions from ten stations in the Barents Sea have been analysed for 24 elements. The deposits occur as discoidal and flat concretions and as coatings, in the latter case on lithified or detrital material or as extensive pavements on the Svalbard shelf. The concretions are compositionally similar to Baltic concretions but differ considerably from deep-ocean nodules, particularly in Cu, Ni and Co contents. Statistical analyses reveal distinct correlations between Mn, Na, Ba, Ni and Cu; the Mn-rich coatings showed enrichment of Mo, Zn and possibly Co in a Mn-phase. The iron phase holds high concretions of P and As. Two iron-rich concretions with high contents of P, Ca, Sr, Y, Yb and La were found east and northeast of Spitsbergen Banken, probably indicating upwelling of nutrient-rich, cold polar water along the Svalbard shelf.
Resumo:
A detailed description of the ores of Lake Storsjoen was given by Vogt J. H. L., 1915 who pointed out that the ores may be divided into two principal types; first, iron ore with 2% or less of manganese (ex: Ertemalm), and, second, ores with manganese contents of up to 30% (ex: Korinter). The iron-rich ore sometimes occurs as a conglomerate embedded in manganese-rich ores, clearly demonstrating that two distinctly different precipitates are involved. In the iron-rich ore, a concentric structure is common of which light brown layers of loose, almost dusty material alternate with hard and brittle black layers, the thickness of each being 0.5 mm or less. The analyses presented in this paper seem to demonstrate that the composition of the sedimentary ores of Lake Storsjden could result from fluctuations in the composition of ground waters feeding the lake.
Resumo:
The increased prevalence of iron deficiency among infants can be attributed to the consumption of an iron deficient diet or a diet that interferes with iron absorption at the critical time of infancy, among other factors. The gradual shift from breast milk to other foods and liquids is a transition period which greatly contributes to iron deficiency anaemia (IDA). The purpose of this research was to assess iron deficiency anaemia among infants aged six to nine months in Keiyo South Sub County. The specific objectives of this study were: to establish the prevalence of infants with iron deficiency anaemia and dietary iron intake among infants aged 6 to 9 months. The cross sectional study design was adopted in this survey. This study was conducted in three health facilities in Keiyo South Sub County. The infants were selected by use of a two stage cluster sampling procedure. Systematic random sampling was then used to select a total of 244 mothers and their infants. Eighty two (82) infants were selected from Kamwosor sub-district hospital and eighty one (81) from both Nyaru and Chepkorio health facilities. Interview schedules, 24-hour dietary recall and food frequency questionnaires were used for collection of dietary iron intake. Biochemical tests were carried out by use of the Hemo-control photochrometer at the health facilities. Infants whose hemoglobin levels were less than 11g/dl were considered anaemic. Further, peripheral blood smears were conducted to ascertain the type of nutritional anaemia. Data was analyzed using the Statistical Package for Social Sciences (SPSS) computer software version 17, 2009. Dietary iron intake was analyzed using the NutriSurvey 2007 computer software. Results indicated that the mean hemoglobin values were 11.3± 0.84 g/dl. Twenty one percent (21.7%) of the infants had anaemia and further 100% of peripheral blood smears indicated iron deficiency anaemia. Dietary iron intake was a predictor of iron deficiency anaemia in this study (t=-3.138; p=0.01). Iron deficiency anaemia was evident among infants in Keiyo South Sub County. The Ministry of Health should formulate and implement policies on screening for anaemia and ensure intensive nutrition education on iron rich diets during child welfare clinics.
Resumo:
Since the fifteen century, the rainfed-cultivation of wheat for grain is traditionally performed on the Island of Madeira. Under several microclimatic conditions and along very sloppy mountains, the landraces are grown on isolated terraces of Andosols with high amounts of iron. Iron oxides are the main inorganic binding agent contributing to the stability of aggregates and to soil fertility in long-term sustainable agriculture in acid and iron-rich soils. After a two day period of seedling initial growth, a screening test of sixty traditional wheat (Triticum spp.) landraces from the ISOPlexis Genebank at the University of Madeira, Funchal, was performed using nutrient solutions containing 10 or 600 mM Fe, during five days, under controlled laboratory conditions. The elongation of the longest primary root was measured for each genotype and the mean root increment relative to control (as, % relative root increment or RRI; n=28) calculated. This parameter appeared to be a sensitive indicator of Fe tolerance in wheat. Over 85% of wheat germplasm showed the RRI higher than 50%, while the RRI of seven accessions exceeded 70%. This indicates that those landraces are Fe tolerant and might be of particular interest for cultivation under acid rich iron soils of tropical and subtropical areas.
Resumo:
Since the fifteen century, the rainfed-cultivation of wheat for grain is traditionally performed on the Island of Madeira. Under several microclimatic conditions and along very sloppy mountains, the landraces are grown on isolated terraces of Andosols with high amounts of iron. Iron oxides are the main inorganic binding agent contributing to the stability of aggregates and to soil fertility in long-term sustainable agriculture in acid and iron-rich soils. After a two day period of seedling initial growth, a screening test of sixty traditional wheat (Triticum spp.) landraces from the ISOPlexis Genebank at the University of Madeira, Funchal, was performed using nutrient solutions containing 10 or 600 mM Fe, during five days, under controlled laboratory conditions. The elongation of the longest primary root was measured for each genotype and the mean root increment relative to control (as, % relative root increment or RRI; n=28) calculated. This parameter appeared to be a sensitive indicator of Fe tolerance in wheat. Over 85% of wheat germplasm showed the RRI higher than 50%, while the RRI of seven accessions exceeded 70%. This indicates that those landraces are Fe tolerant and might be of particular interest for cultivation under acid rich iron soils of tropical and subtropical areas.
Resumo:
Structure and chemistry of poorly characterized phases (PCP). We suggest here that approximately 10 angstrom PCP, a dominant matrix variety, has a structure equivalent to iron-rich tochilinite [6Fe (sub 0.9) S 5(Fe, Mg) (OH) (sub 2) ] which consists of coherently interstratified mackinawite and brucite sheets. approximately 17 angstrom PCP, previously described as an SBB-type mixed-layer structure, is a commensurate intergrowth of serpentine and tochilinite layers. A wide range of cation substitutions is possible within both tochilinite and serpentine-tochilinite structural types. Various forms of PCP observed in carbonaceous chondrites are intergrowths of tochilinite, serpentine, serpentine-tochilinite and/or valleriite-type minerals.--Modified journal abstract.