982 resultados para iron limitation
Resumo:
Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs); six types of phytoplankton, three types of zooplankton, and heterotrophic bacteria. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing zooplankton, and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean High Nutrient Low Chlorophyll (HNLC) region during summer. When model simulations do not represent crustacean macrozooplankton grazing, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there was no iron deposition from dust. When model simulations included the developments of the zooplankton component, the simulation of phytoplankton biomass improved and the high chlorophyll summer bias in the Southern Ocean HNLC region largely disappeared. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community rather than iron limitation. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.
Resumo:
The opportunistic bacterium Burkholderia cenocepacia C5424 contains two catalase/peroxidase genes, katA and katB. To investigate the functions of these genes, katA and katB mutants were generated by targeted integration of suicide plasmids into the katA and katB genes. The catalase/peroxidase activity of the katA mutant was not affected as compared with that of the parental strain, while no catalase/peroxidase activity was detected in the katB mutant. However, the katA mutant displayed reduced resistance to hydrogen peroxide under iron limitation, while the katB mutant showed hypersensitivity to hydrogen peroxide, and reduced growth under all conditions tested. The katA mutant displayed reduced growth only in the presence of carbon sources that are metabolized through the tricarboxylic acid (TCA) cycle, as the growth defect was abrogated in cultures supplemented with glucose or glycerol. This phenotype was also correlated with a marked reduction in aconitase activity. In contrast, aconitase activity was not reduced in the katB mutant and parental strains. The authors conclude that the KatA protein is a specialized catalase/peroxidase that has a novel function by contributing to maintain the normal activity of the TCA cycle, while KatB is a classical catalase/peroxidase that plays a global role in cellular protection against oxidative stress.
Resumo:
Under conditions of iron limitation Pseudomonas fluorescens ATCC 17400 produces two siderophores, pyoverdine, and a second siderophore quinolobactin, which itself results from the hydrolysis of the unstable molecule 8-hydroxy-4-methoxy-2-quinoline thiocarboxylic acid (thioquinolobactin). Pseudomonas fluorescens ATCC 17400 also displays a strong in vitro antagonism against the Oomycete Pythium, which is repressed by iron, suggesting the involvement of a siderophore(s). While a pyoverdine-negative mutant retains most of its antagonism, a thioquinolobactin-negative mutant only slowed-down Pythium growth, and a double pyoverdine-, thioquinolobactin-negative mutant, which does not produce any siderophore, totally lost its antagonism against Pythium. The siderophore thioquinolobactin could be purified and identified from spent medium and showed anti-Pythium activity, but it was quickly hydrolysed to quinolobactin, which we showed has no antimicrobial activity. Analysis of antagonism-affected transposon mutants revealed that genes involved in haem biosynthesis and sulfur assimilation are important for the production of thioquinolobactin and the expression of antagonism.
Resumo:
Active fluorescence (fast repetition rate fluorometry, FRRF) was used to follow the photosynthetic response of the phytoplankton community during the 13-day Southern Ocean Iron RElease Experiment (SOIREE). This in situ iron enrichment was conducted in the polar waters of the Australasian-Pacific sector of the Southern Ocean in February 1999. Iron fertilisation of these high nitrate low chlorophyll (HNLC) waters resulted in an increase in the photosynthetic competence (Fv/Fm) of the resident cells from around 0.20 to greater than 0.60 (i.e. close to the theoretical maximum) by 10/11 days after the first enrichment. Although a significant iron-mediated response in Fv/Fm was detected as early as 24 h after the initial fertilisation, the increase in Fv/Fm to double ambient levels took 6 days. This response was five-fold slower than observed in iron enrichments (in situ and in vitro) in the HNLC waters of the subarctic and equatorial Pacific. Although little is known about the relationship between water temperature and Fv/Fm, it is likely that low water temperatures - and possibly the deep mixed layer - were responsible for this slow response time. During SOIREE, the photosynthetic competence of the resident phytoplankton in iron-enriched waters increased at dissolved iron levels above 0.2 nM, suggesting that iron limitation was alleviated at this concentration. Increases in Fv/Fm of cells within four algal size classes suggested that all taxa displayed a photosynthetic response to iron enrichment. Other physiological proxies of algal iron stress (such as flavodoxin levels in diatoms) exhibited different temporal trends to iron-enrichment than Fv/Fm during the time-course of SOIREE. The relationship between Fv/Fm, algal growth rate and such proxies in Southern Ocean waters is discussed.
Resumo:
Photophysiological processes as well as uptake characteristics of iron and inorganic carbon were studied in inshore phytoplankton assemblages of the Western Antarctic Peninsula (WAP) and offshore assemblages of the Drake Passage. Chlorophyll a concentrations and primary productivity decreased from in- to offshore waters. The inverse relationship between low maximum quantum yields of photochemistry in PSII (Fv/Fm) and large sizes of functional absorption cross sections (sigma PSII) in offshore communities indicated iron-limitation. Congruently, the negative correlation between Fv/Fm values and iron uptake rates across our sampling locations suggest an overall better iron uptake capacity in iron-limited pelagic phytoplankton communities. Highest iron uptake capacities could be related to relative abundances of the haptophyte Phaeocystis antarctica. As chlorophyll a-specific concentrations of humic-like substances were similarly high in offshore and inshore stations, we suggest humic-like substances may play an important role in iron chemistry in both coastal and pelagic phytoplankton assemblages. Regarding inorganic carbon uptake kinetics, the measured maximum short-term uptake rates (Vmax(CO2)) and apparent half-saturation constants (K1/2(CO2)) did not differ between offshore and inshore phytoplankton. Moreover, Vmax(CO2) and K1/2(CO2) did not exhibit any CO2-dependent trend over the natural pCO2 range from 237 to 507 µatm. K1/2(CO2) strongly varied among the sampled phytoplankton communities, ranging between 3.5 and 35.3 µmol/L CO2. While in many of the sampled phytoplankton communities, the operation of carbon-concentrating mechanisms (CCMs) was indicated by low K1/2(CO2) values relative to ambient CO2 concentrations, some coastal sites exhibited higher values, suggesting down-regulated CCMs. Overall, our results demonstrate a complex interplay between photophysiological processes, iron and carbon uptake of phytoplankton communities of the WAP and the Drake Passage.
Resumo:
The marine nitrogen (N) inventory is thought to be stabilized by negative feedback mechanisms that reduce N inventory excursions relative to the more slowly overturning phosphorus inventory. Using a global biogeochemical ocean circulation model we show that negative feedbacks stabilizing the N inventory cannot persist if a close spatial association of N2 fixation and denitrification occurs. In our idealized model experiments, nitrogen deficient waters, generated by denitrification, stimulate local N2 fixation activity. But, because of stoichiometric constraints, the denitrification of newly fixed nitrogen leads to a net loss of N. This can enhance the N deficit, thereby triggering additional fixation in a vicious cycle, ultimately leading to a runaway N loss. To break this vicious cycle, and allow for stabilizing negative feedbacks to occur, inputs of new N need to be spatially decoupled from denitrification. Our idealized model experiments suggest that factors such as iron limitation or dissolved organic matter cycling can promote such decoupling and allow for negative feedbacks that stabilize the N inventory. Conversely, close spatial co-location of N2 fixation and denitrification could lead to net N loss.
Resumo:
Photophysiological processes as well as uptake characteristics of iron and inorganic carbon were studied in inshore phytoplankton assemblages of the Western Antarctic Peninsula (WAP) and offshore assemblages of the Drake Passage. Chlorophyll a concentrations and primary productivity decreased from in- to offshore waters. The inverse relationship between low maximum quantum yields of photochemistry in PSII (Fv/Fm) and large sizes of functional absorption cross sections (sigma PSII) in offshore communities indicated iron-limitation. Congruently, the negative correlation between Fv/Fm values and iron uptake rates across our sampling locations suggest an overall better iron uptake capacity in iron-limited pelagic phytoplankton communities. Highest iron uptake capacities could be related to relative abundances of the haptophyte Phaeocystis antarctica. As chlorophyll a-specific concentrations of humic-like substances were similarly high in offshore and inshore stations, we suggest humic-like substances may play an important role in iron chemistry in both coastal and pelagic phytoplankton assemblages. Regarding inorganic carbon uptake kinetics, the measured maximum short-term uptake rates (Vmax(CO2)) and apparent half-saturation constants (K1/2(CO2)) did not differ between offshore and inshore phytoplankton. Moreover, Vmax(CO2) and K1/2(CO2) did not exhibit any CO2-dependent trend over the natural pCO2 range from 237 to 507 µatm. K1/2(CO2) strongly varied among the sampled phytoplankton communities, ranging between 3.5 and 35.3 µmol/L CO2. While in many of the sampled phytoplankton communities, the operation of carbon-concentrating mechanisms (CCMs) was indicated by low K1/2(CO2) values relative to ambient CO2 concentrations, some coastal sites exhibited higher values, suggesting down-regulated CCMs. Overall, our results demonstrate a complex interplay between photophysiological processes, iron and carbon uptake of phytoplankton communities of the WAP and the Drake Passage.
Resumo:
The chromosomal ß-lactamase of Pseudomonas aeruginosa SAlconst (a derepressed laboratory strain) was isolated and purified. Two peaks of activity were observed on gel permeation chromatography (one major peak mol. wt. 45 kD and one minor peak of 54 kD). Preparations from 12 clinical derepressed strains showed identical results. Chromosomal ß-lactamase production in both normal and derepressed P. aeruginosa strains was induced both by iron restricted growth conditions and by penicillin G. The majority of the enzyme (80-90%) was found in the periplasm and cytoplasm but a significant amount (2-20%) was associated with the outer membrane (OM). The growth conditions did not affect the distribution of the enzyme between subcellular fractions although higher activity was found in the cells grown under iron limitation and/ or in the presence of ß-lactams. The penicillanate sulphone inhibitor, tazobactam, displayed irreversible kinetics whilst cloxacillin, cefotaxime, ampicillin and penicillin G were all competitive inhibitors of the enzyme. Similar results were obtained for the Enterobacter cloacae P99 [ß-lactamase, but tazobactam displayed a non-classical kinetic pattern for the Staphylococcus aureus PC1 ß-lactamase. The residues involved in ß-lactam hydrolysis by the P aeruginosa SAlconst enzyme were detennined by affinity labelling with tazobactam. A tryptic digestion fragment of the inhibited enzyme contained the amino acids D, T, S, E, P, G, A, C, V, M, I, Y, F, H, K, R. This suggests the involvement of the conserved SVSK, DAE and KTG motifs found in all penicillin sensitive proteins. A model of the 3-D structure of the active site of the P aeruginosa SAlconst chromosomal ß-!actamase was constructed from the published amino acid sequence of P aeruginosa chromosomal ß-lactamase and the a-carbon coordinates of the S. aureus PCI ß-lactamase by homology modelling and energy minimisation. The crystal structure of tazobactam was determined and energy minimised. Computer graphics docking identified Ser 72 as a possible residue involved in a secondary attack on the C5 position of tazobactam after initial ß-lactam hydrolysis by serine 70. The enhanced activity of tazobactam over sulbactam might be explained by the triazole substituent which might participate in favourable hydrogen bonding between N3 and active site residues.
Resumo:
One of the hallmarks of bacterial survival is their ability to adapt rapidly to changing environmental conditions. Niche adaptation is a response to the signals received that are relayed, often to regulators that modulate gene expression. In the post-genomic era, DNA microarrays are used to study the dynamics of gene expression on a global scale. Numerous studies have used Pseudomonas aeruginosa--a Gram-negative environmental and opportunistic human pathogenic bacterium--as the model organism in whole-genome transcriptome analysis. This paper reviews the transcriptome studies that have led to immense advances in our understanding of the biology of this intractable human pathogen. Comparative analysis of 23 P. aeruginosa transcriptome studies has led to the identification of a unique set of genes that are signal specific and a core set that is differentially regulated. The 303 genes in the core set are involved in bacterial homeostasis, making them attractive therapeutic targets.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Various biomarkers (n-alkanes, n-alcohols, and sterols) have been studied in a piston core TSP-2PC taken from the Southern Ocean to reconstruct the paleoenvironmental changes in the subantarctic region for the last two deglaciations. Mass accumulation rates of terrestrial (higher molecular weight n-alkanes and n-alcohols) and marine (dinosterol and brassicasterol) biomarkers increased significantly at the last two glacials and stayed low during interglacial peaks (early Holocene and the Eemian). These records indicate that the enhanced atmospheric transport of continental materials and the increased marine biological productivity were synchronously linked in the Southern Ocean at the last two glacials. This suggests that increased glacial dust inputs have relieved iron limitation in the subantarctic Southern Ocean. These two processes, however, were not linked at the cooling phase from the Eemian to marine isotope stage (MIS) 5d. During this period, paleoproductivity may have been influenced by the latitudinal migration of the high-production zone associated with the Antarctic Polar Front.
Resumo:
High-resolution records of sedimentary proxies provide insights into fine-scale geochemical responses to climatic forcing. Gamma-ray attenuation (GRA) bulk-density data and magnetic stratigraphy records from Palmer Deep, Site 1098, show variability close to the same scale as ice cores, making this site ideal for high-resolution geochemical investigations. In conjunction with shipboard geophysical measurements, silica records allow high-resolution evaluation of the frequencies and amplitudes of biogenic variability. This provides investigators additional data sets to evaluate the global extent of climatic events that are presently defined by regional oceanic data sets (e.g., Younger Dryas in the North Atlantic) and to evaluate the potential mechanisms that link biological productivity and climate in the Southern Ocean. In addition, because of the observed links between diatom blooms and export productivity (Michaels and Silver, 1988, doi:10.1016/0198-0149(88)90126-4), biogenic silica may be an indicator of the efficiency of the biological pump (removal of organic carbon from the euphotic zone and burial within the sediments). Because the net removal of CO2 (on short time scales up to millennial, the balance between upwelled CO2, carbon fixation, and the removal of organic carbon from the surface ocean) can determine the atmospheric concentration; proxies that allow us to quantify export production yield insights into carbon cycle responses. In today's ocean, diatoms are integrally linked with new production (production based on the use of nitrate and molecular nitrogen rather than ammonium, which is generated by the microbial degradation of organic carbon) (Dugdale and Goering, 1967). Thus, as with nutrient utilization proxies, biogenic silica may be a good indicator of export production. The difficulties lie in translating the biogenic opal burial records to export production. Numerous factors control the preservation of sedimentary biogenic silica, including depth of the water column, water temperature, trace element chemistry, grazing pressure, bloom structure, and species composition of the diatom assemblage (Nelson et al., 1995, doi:10.1029/95GB01070). In addition, several recent investigations have noted additional complications. Iron limitation increases the uptake of Si relative to carbon (Hutchins et al., 1998, ; Takeda, 1998, doi:10.1038/31674). In the Southern Ocean, iron limitation could produce more robust, and thus better preserved, diatoms; thus, the burial record may be a record of iron limitation rather than of the export of organic carbon (Boyle, 1998). In addition, laboratory experiments show that bacteria accelerate the dissolution of biogenic silica (Bidle and Azam, 1999, doi:10.1038/17351). Both the species composition and temperature seem to influence the amount of dissolution. Evidence of recycling of silicic acid within the photic zone (Brzezinski et al., 1997) suggests that the silica pump (removal from the euphotic zone of silica relative to nitrogen and phosphorus) may work with variable efficiency. This becomes an issue when trying to reconstruct the removal of organic carbon from sedimentary biogenic silica records. In fact, there is a wide range in the Si:Corganic molar ratio in the Southern Ocean (0.18-0.81) (Nelson et al., 1995; Ragueneau et al., 2000, doi:10.1016/S0921-8181(00)00052-7). Thus, the presence (or absence) of biogenic silica alone may tell us little about the export productivity, complicating the interpretation of age-related trends. One recent assessment has added some hope to links between productivity and opal burial in the Southern Ocean (Pondaven et al., 2000). Quantitative comparison of different productivity proxies will greatly aid in this evaluation.
Resumo:
The work presented herein covers a broad range of research topics and so, in the interest of clarity, has been presented in a portfolio format. Accordingly, each chapter consists of its own introductory material prior to presentation of the key results garnered, this is then proceeded by a short discussion on their significance. In the first chapter, a methodology to facilitate the resolution and qualitative assessment of very large inorganic polyoxometalates was designed and implemented employing ion-mobility mass spectrometry. Furthermore, the potential of this technique for ‘mapping’ the conformational space occupied by this class of materials was demonstrated. These claims are then substantiated by the development of a tuneable, polyoxometalate-based calibration protocol that provided the necessary platform for quantitative assessments of similarly large, but unknown, polyoxometalate species. In addition, whilst addressing a major limitation of travelling wave ion mobility, this result also highlighted the potential of this technique for solution-phase cluster discovery. The second chapter reports on the application of a biophotovoltaic electrochemical cell for characterising the electrogenic activity inherent to a number of mutant Synechocystis strains. The intention was to determine the key components in the photosynthetic electron transport chain responsible for extracellular electron transfer. This would help to address the significant lack of mechanistic understanding in this field. Finally, in the third chapter, the design and fabrication of a low-cost, highly modular, continuous cell culture system is presented. To demonstrate the advantages and suitability of this platform for experimental evolution investigations, an exploration into the photophysiological response to gradual iron limitation, in both the ancestral wild type and a randomly generated mutant library population, was undertaken. Furthermore, coupling random mutagenesis to continuous culture in this way is shown to constitute a novel source of genetic variation that is open to further investigation.
Resumo:
This paper advances findings of Yang et al. 2010 and reports on how slight changes in pH or Ionic strength can significantly alter particle behaviour in porous media, when humic acids have been deposited beforehand. .
Resumo:
The effects of haem limitation and iron restriction on cells of non typable Haemophilus influenzae were investigated. Haem limitation was achieved by adding concentrations of haem to growth media which resulted in substantial decreases in final cell yields. Iron restriction was achieved by substituting protoporphyrin IX (PPIX) for haem in the growth medium and adding an iron chelator to the system. The effect of these nutrient limitations on a) outer membrane composition, and b) respiratory systems of non typable H.influenzae was investigated. Several of the strains examined produced new PPIX-specific outer membrane proteins when cultured utilising PPIX as a porphyrin source. The immune response of patients with bronchiectasis to outer membrane antigens of H.influenzae cultured under iron-restricted conditions was analysed by ELISA and immunoblotting techniques. ELISA analysis revealed that individuals with severe bronchiectasis had high titres of antibodies directed against H.influenzae OMs in both serum and sputum. Immunoblotting with homologous serum showed that where PPIX-specific OMPs were produced they were antigenic and were recognised by patients' serum. This suggested that these H.influenzae OMPs may be expressed in vivo. Additionally, the development of the immune responses to non typable H.influenzae outer membrane antigens was investigated using a rat lung model. Bacteria encased in agar beads were inoculated intratracheally into rat lungs, infection was established, and the immune response monitored for 6 weeks. The animals developed antibodies to PPIX-specific OMPs during the course of infection, providing further evidence that H.influenzae express these novel OMP antigens when growing in vivo. Studies in vitro on respiratory systems of phenotypically altered H.influenzae showed that bacteria grown utilising PPIX as a porphyrin source, or under conditions of iron-restriction produced ten fold fewer cytochromes than cells grown in nutrient excess, while haem limited H.influenzae produced no detectable cytochromes. Respiration of various substrates was depressed in haem limited and in PPIX-grown cultures as compared with cells grown in nutrient excess.