998 resultados para iron export


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic John T. Allen1,2, Louise Brown1,3, Richard Sanders1, C. Mark Moore1, Alexander Mustard1, Sophie Fielding1, Mike Lucas1, Michel Rixen4, Graham Savidge5, Stephanie Henson1 and Dan Mayor1 Top of pageDiatoms are unicellular or chain-forming phytoplankton that use silicon (Si) in cell wall construction. Their survival during periods of apparent nutrient exhaustion enhances carbon sequestration in frontal regions of the northern North Atlantic. These regions may therefore have a more important role in the 'biological pump' than they have previously been attributed1, but how this is achieved is unknown. Diatom growth depends on silicate availability, in addition to nitrate and phosphate2, 3, but northern Atlantic waters are richer in nitrate than silicate4. Following the spring stratification, diatoms are the first phytoplankton to bloom2, 5. Once silicate is exhausted, diatom blooms subside in a major export event6, 7. Here we show that, with nitrate still available for new production, the diatom bloom is prolonged where there is a periodic supply of new silicate: specifically, diatoms thrive by 'mining' deep-water silicate brought to the surface by an unstable ocean front. The mechanism we present here is not limited to silicate fertilization; similar mechanisms could support nitrate-, phosphate- or iron-limited frontal regions in oceans elsewhere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topography has been reported to be the major factor ruling the spatial distribution of Acrisols, Plinthosols and Gleysols on the seasonally flooded, low elevation plateaux of the upper Amazon basin occupied by Tertiary (Ica & Solimoes) sediments. In this study, detailed morphological and mineralogical investigations conducted in a representative 25-ha site were combined with hydro-geochemical data to relate the vertical and lateral soil differentiations observed to the hydro-geological history of that part of the basin. As a result of the uplift of the Andes, several cuts in the extensive Tertiary marshlands have formed, at first, slightly incised plateaux of low elevation. There, weathering under hot and humid climates would have generated a reddish, freely drained and bioturbated topsoil layer and the vertical differentiation in subsoil sediments of a plinthite over an iron-depleted mottled clay. The second episode of soil differentiation is linked to the replacement of the forest by a savannah under the drier climates of the late Pleistocene, which favours surface runoff and the infill of the incisions by fine particles. This infill, combined with the return to the present humid climate, has then enabled the local groundwater to rise on the plateaux and to generate episaturation at the topsoil/subsoil transition close to the depressions. Nowadays, ferrous iron is released from the partly iron-depleted topsoil weathering front at high water levels during the rainy seasons. It moves from footslope to low-lying positions and from top to bottom in the soil profile according to the groundwater dynamics. The present general trend is thus to the lateral export of iron at high water levels due to subsurface and overland flows, its vertical transfer during the recession of the groundwater and accumulation in a nodular plinthite. In the latter, ferrous iron is adsorbed onto its softest iron masses where it feeds the neoformation of ferrihydrite that rapidly dehydrates into haematite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.