995 resultados para ionomer glass cements
Resumo:
OBJECTIVES: This paper reports a study of the water loss behaviour of two commercial glass-ionomer cements coated with varnishes. METHODS: For each cement (Fuji IX Fast or Chemflex), specimens (6mmdiameterx2mm depth) were prepared and cured for 10min at 37 degrees C. They were exposed to a desiccating environment over H(2)SO(4) either uncoated or coated with the appropriate varnish (Fuji Varnish, a solvent-based lacquer, or Fuji Coat, a light-cured varnish). Four specimens were prepared for each material. They were weighed at hourly intervals for 6h, daily for up to 5 days, then weekly thereafter until equilibration. RESULTS: Unlike the uncoated specimens, water loss from varnished cements was not Fickian, but followed the form: mass loss=A/t+B, where t is time, A and B are constants specific to each cement/varnish combination. A varied from 1.22 to 1.30 (mean 1.26, standard deviation 0.04), whereas B varied from 1.54 to 2.09 (mean -1.83, standard deviation 0.29). At equilibrium, varnished specimens lost much less water than unvarnished ones (p>0.01) but there was no significant difference between the solvent-based and the light-cured varnishes. SIGNIFICANCE: Varnishes protect immature glass-ionomer cements from drying out by altering the mechanism of water loss. This slows the rate of drying but does not necessarily change the total amount of water retained. It confirms that, in clinical use, glass-ionomer restoratives should be varnished to allow them to mature satisfactorily.
Resumo:
Glass ionomer cements are widely used in dentistry as restorative materials and adhesives for composite restorations. However, the results of genotoxicity studies using these materials are inconclusive in literature. The goal of this study was to examine the genotoxic and cytotoxic potential of three different glass ionomer cements available commercially (Ketac Cem, Ketac Molar and Vitrebond) by the single cell gel (comet) assay and trypan blue exclusion test, respectively. For this, such materials were exposed to Chinese hamster ovary (CHO) cells in vitro for 1 h at 37 degrees C. Data were assessed by Kruskall-Wallis nonparametric test. The results showed that the powder from Ketac Molar displayed genotoxicity only in the maximum concentration evaluated (100 mu g/mL). In the same way, the liquid from Vitrebond at 0.1% dilution caused an increase of DNA injury. Significant differences (P < 0.05) in cytotoxicity provoked by all powders tested of glass ionomer cements were observed for exposure at 1000 mu g/mL concentration. With respect to liquids of glass ionomer cements evaluated, the major toxic effect on cell viability was produced at 10%, beginning at the dilution of 0.5% for Vitrebond. Taken together, we conclude that some components of glass ionomer cements show both genotoxic and cytotoxic effects.
Resumo:
Glass-ionomer cements are widely used in dentistry as restorative materials and adhesives for composite restorations. A number of genotoxicity studies have been conducted using these materials with results conflicting so far. Thus, the approach was aimed to look at the genotoxic and cytotoxic potential of three different glass-ionomer cements available commercially (Ketac Cem, Ketac Molar and Vitrebond) by the single cell gel (comet) assay and trypan blue exclusion test, respectively. For this, such materials were exposed to mouse lymphoma cells in vitro for 1 h at 37 degrees C. Data were assessed by Kruskall-Wallis non-parametric test. The results showed that all powders assayed did not show genotoxic effects. on the other hand, the liquid from Vitrebond at 0.1% dilution caused an increase of DNA injury. Significant statistically differences (P < 0.05) in cytotoxicity provoked by all powders tested were observed for exposure at 1000 mu g mL(-1) concentration and 100 mu g mL(-1) for Ketac Molar. With respect to liquids of glass-ionomer cements evaluated, the major toxic effect on cell viability was produced at 1%, beginning at the dilution of 0.5% for Vitrebond. Taken together, these results support the notion that some components of glass-ionomer cements show both genotoxic and cytotoxic effects in higher concentrations.
Resumo:
A cárie secundária representa problema de saúde pública e socioeconômico no mundo. A restauração de dentes acometidos por cárie pode criar condições favoráveis à proliferação microbiana na superfície do material restaurador ou na interface dente/restauração, criando ambiente propício para o estabelecimento de cárie secundária. O objetivo deste estudo foi avaliar a capacidade de retenção de placa bacteriana em cimentos de ionômero de vidro convencionais (Chelon-Fil e Vidrion R) e modificados por resina (Vitremer e Fuji II LC) e de resina composta híbrida (Z100), utilizada como controle. Nos testes de retenção de microrganismos, in situ, 12 voluntários utilizaram, por 7 dias, placa de Hawley contendo corpos-de-prova de todos os materiais. A seguir, os corpos-de-prova foram transferidos para tubos contendo 2,0 ml de Ringer-PRAS e os microrganismos presentes em sua superfície foram cultivados em placa com ágar-sangue e ágar Mitis Salivarius Bacitracina, os quais foram incubados, a 37ºC, em anaerobiose (90% N2, 10% CO2), por 10 e 2 dias, respectivamente. Os ionômeros modificados por resina retiveram quantidade de bactérias similar àquela mostrada pela resina testada. Os ionômeros modificados por resina também apresentaram menor número de estreptococos do grupo mutans do que a resina e os cimentos ionoméricos convencionais. Os ionômeros de vidro convencionais apresentaram menor número de estreptococos do grupo mutans que a resina, sendo que essa diferença não foi estatisticamente significativa.
Resumo:
This study evaluated the surface microhardness of four glass ionomer cements and a composite resin (Fuji IX, Ketac Molar, Vidrion R, Vitromolar and Z 250). Ten specimens of each glass ionomer cement with 8.0 mm diameter and 5.0 mm high dimensions were made and Vicker's microhardness measurements were taken at 1 day and 1 week after initial setting reaction. The results were analyzed using Student's T test and Tukey test (p < 0.05) and demonstrated that the values of microhardness increased after 1 week, with the exception of Fuji IX. Resin composite Z250 presented the greatest values for microhardness.
Resumo:
The in vitro antibacterial activity of four glass ionomer cements ( Fuji IX, Ketac Molar, Vidrion R and Vitromolar) indicated for Atraumatic Restorative Treatment ( ART) was studied against strains of bacteria involved in the development of oral diseases, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus and Actinomyces viscosus. The agar plate diffusion test was used for the cultures, which included chlorhexidine as a positive control. The results demonstrated that all the cements evaluated presented antibacterial activity. Based on the results of this study, it can be concluded that Fuji IX and Ketac Molar presented the most effective antibacterial activity considering the ART approach.
Resumo:
To evaluate the cytotoxic effects of five glass-ionomer cements (GICs) on an odontoblast cell line (MDPC-23), disks of every material were prepared and divided into Group 1: Vitrebond, Group 2: Vitremer, Group 3: Fuji IILC, Group 4: Fuji IX GP, Group 5: Ketac-Molar, Group 6: Z-100 (positive control). In Group 7, phosphate-buffered saline solution (negative control) was applied on filter paper. After placing the samples in the bottom of wells, the cells (30,000 cells/cm(2)) were plated and incubated for 72 h. The cell number was counted, the cell morphology was assessed by scanning electron microscopy and the cell metabolism was evaluated using methyltetrazolium assay. The statistical analysis of Kruskal-Wallis was used to determine if the scores obtained for the cell metabolism and number of cells were different at the 95% confidence level. In groups 1, 2, 3, 4, 5, and 6 the materials decreased the cell number by 74.5% 75.5%, 45.5%, 29.5%, 32.5%, and 88.5%, respectively. In groups 1, 2, 3, 4, and 5, the experimental GICs reduced the cell metabolism by 79%, 84%, 54%, 40%, and 42.5%, respectively. Despite the fact that all experimental materials were cytotoxic to the MDPC-23 cells, the GICs were the least cytotoxic. on the other hand, the RMGICs caused the highest cytophatic effects. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. To evaluate the effects of current resin-modified glass-ionomer cements (RMGICs) applied on culture of cells or implanted into subcutaneous tissue of rats.Methods. Experiment 1 - Thirty round-shaped samples of every RMGICs: Rely X Luting Cement (RL), Vitremer (VM), and Vitrebond (VB) were placed into wells with 1.1 mL of culture medium (DMEM), and incubated for 24,48 or 72 h. The extracts from every sample were applied on the MDPC-23 cells. Fresh DMEM was used as control group. The MTT assay was carried out for mitochondrial respiration. Experiment 2 - Fifty-four polyethylene tubes filled with the experimental materials were implanted into the dorsal subcutaneous tissue of rats. At 7, 30, and 90 days the animals were killed and the biopsies were processed for histological evaluation.Results. Experiment 1 - Both time of elution and material significantly influenced cell respiratory activity. in general, the extracts obtained at 24 h were less cytotoxic than 48 and 72 h incubation. The cytotoxic effect of VM and RL were not statistically different (P < 0.05) for the 24-hour period. VB showed the highest cytotoxic effect. Experiment 2 - All RMGICs elicited at 7 days a moderate to intense inflammatory reaction which decreased over time. However, connective healing occurred for most of samples at 90-day evaluation.Significance. Glass-ionomer cements may cause noticeable inflammatory response when in direct contact to connective tissue. The toxic effects of this kind of soluble material depend on the amount of components released in the aqueous environment. (C) 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to evaluate the surface roughness of two glass-ionomer cements (Vitremer and Chelon-Fil), and one compomer (Dyract) when submitted to different finishing/polishing procedures at different times. A hundred 80-sample discs were made of each material and randomly divided into six finishing/polishing groups: mylar strip (control); Sof-Lex discs; diamond burs; diamond burs/Sof-Lex discs; 30-fluted carbide bur; 30-fluted carbide bur/Sof-Lex discs. These procedures were carried out immediately after preparation of the samples, after 24 and 168 h. Average surface roughness (Ra) was measured with a profilometer and the values were compared using anova (P < 0.05). The smoothest surface for all materials was obtained when cured in contact with the mylar strip. All other tested products increased surface roughness of restorative materials, but Sof-lex discs lead to better results. The worst results were verified with diamond burs. The finishing/polishing procedures, when performed immediately, can improve the roughness of glass-ionomer cements but not of the compomer tested.
Resumo:
This study aimed to evaluate the influence of fluoride-containing mouthrinse solutions (Fluorgard and Oral B) on the superficial microhardness of two resin-modified glass ionomer cements (Vitremer and Fuji II LC). Fifteen discs-shaped specimens of each glass ionomer cement (0 10 mm; 2 mm thick) were prepared, thereby forming two groups. After 24-hour storage in artificial saliva, the microhardness was measure and the data were recorded. Next, each group was divided into three subgroups (n = 5), according to the solution to be immersed in. Control specimens were kept in artificial saliva along the whole experiment. The test specimens were kept in mouthrinse solution for 30 days. Vickers surface microhardness was analyzed at predetermined evaluation periods: 24 h, 48 h, 7, 14, 21 and 30 days after specimens' preparation. Data were subjected to three-way ANOVA and to Tukey test (p < 0.05). A better behavior of Fuji II LC was observed and Fluorgard affected most the characteristics of the tested materials. It may be concluded that fluoride-containing solutions influenced the tested characteristics of materials, mainly of Vitremer.