879 resultados para ionene, electrostatic self assembly, nanoparticles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability at low temperature, ca. 4 degrees C, were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as prepared nanoparticles revealed the formation of well-dispersed An NPs of ca. 2 nm diameter. Moreover, the color change of the An NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on An NPs. All the characterization results showed that the monodisperse An NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a new capping agent, cinnamic acid ( CA) was used to synthesize Au nanoparticles (NPs) under ambient conditions. The size of the NPs can be controlled by adjusting the concentration of reductant ( in our experiment sodium borohydride was used) or CA. The CA-stabilized Au NPs can self-assemble into 'nanowire-like' or 'pearl-necklace-like' nanostructures by adjusting the molar ratio of CA to HAuCl4 or by tuning the pH value of the Au colloidal solution. The process of Au NPs self-assembly was investigated by UV - vis spectroscopy and transmission electron microscopy. The results reveal that the induced dipole - dipole interaction is the driving force of Au NP linear assemblies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles capped by 4-ferrocene thiophenol with an average core size of 2.5 nm and surface plasmon absorbance at 522 nm were place-exchanged with 1,8-octanedithiol, and then self-assembled onto the gold electrode via tail SH group. The self-assembly was characterized by X-ray photoelectron spectroscopy. Cyclic voltammograms examined the coverage fraction of the self-assembled monolayers of the electroactive gold nanoparticles and the formal potential of the indicated SAMs. Further experiments exhibited that the electrode process was controlled by surface confined faradic reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, cetyltrimethylammonium bromide (CTAB)-capped gold nanoparticles were synthesized successfully by using CTAB as a phase-transfer catalyst and stabilizer simultaneously in a two-phase toluene/water system. The as-prepared gold nanoparticles were characterized and analyzed by virtue of X-ray photoelectron spectroscopy, UV-visible absorbance spectroscopy, and infrared spectroscopy. The particle size information and collective self-assembling properties of the CTAB-capped gold nanoparticles on carbon-coated copper grid and mica were evaluated by transmission electron microscopy and atomic force microscopy, respectively. As a result it is demonstrated that the 3-D CTAB monolayers on a gold cluster are in the disordered liquid state. The interparticle spacing can be controlled either physically by the inherent particle-to-particle interactions or chemically by molecular linker. The assembly of both nanoparticles and linker-bridged nanonetworks on mica follows a hydrophobic interaction mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique reverse micelle method has been developed to prepare gold-coated iron (Fe@Au) nanoparticles. XRD, UV/vis, TEM, and magnetic measurements are utilized to characterize the nanocomposites. XRD only gives FCC patterns of gold for the obtained nanoparticles. The absorption band of the Fe@Au colloid shifts to a longer wavelength and broadens relative to that of the pure gold colloid. TEM results show that the average size of Fe@Au nanoparticles is about 10 nm, These nanoparticles are self-assembled into chains on micron scale under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature (T-B) of 42 K, At 300 K (above T-B), no coercivity (Hc) and remanence (M-r) is observed in the magnetization curve, while at 2K (below T-B) He and M, are observed to be 728 Oe and 4.12 emu/g, respectively, (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multivalency is the increase in avidity resulting from the simultaneous interaction of multiple ligands with multiple receptors. This phenomenon, seen in antibody-antigen and virus-cell membrane interactions, is useful in designing bioinspired materials for targeted delivery of drugs or imaging agents. While increased avidity offered by multivalent targeting is attractive, it can also promote nonspecific receptor interaction in nontarget tissues, reducing the effectiveness of multivalent targeting. Here, we present a thermal targeting strategy--dynamic affinity modulation (DAM)--using elastin-like polypeptide diblock copolymers (ELP(BC)s) that self-assemble from a low-affinity to high-avidity state by a tunable thermal "switch", thereby restricting activity to the desired site of action. We used an in vitro cell binding assay to investigate the effect of the thermally triggered self-assembly of these ELP(BC)s on their receptor-mediated binding and cellular uptake. The data presented herein show that (1) ligand presentation does not disrupt ELP(BC) self-assembly; (2) both multivalent ligand presentation and upregulated receptor expression are needed for receptor-mediated interaction; (3) increased size of the hydrophobic segment of the block copolymer promotes multivalent interaction with membrane receptors, potentially due to changes in the nanoscale architecture of the micelle; and (4) nanoscale presentation of the ligand is important, as presentation of the ligand by micrometer-sized aggregates of an ELP showed a low level of binding/uptake by receptor-positive cells compared to its presentation on the corona of a micelle. These data validate the concept of thermally triggered DAM and provide rational design parameters for future applications of this technology for targeted drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexahistidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac’s), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the β-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligonucleotides (ASOs) have the potential of revolutionizing medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated with nanoparticles to enhance their stability and cellular uptake; however, one of the biggest challenges is the poor understanding of their uptake mechanism, which is needed for designing better ASOs with high activity and low toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (P-PMO), 2?Omethyl phosphorothioate (2?OMe) and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Deuchenne muscular dystrophy (DMD). We show that P-PMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. P-PMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations P-PMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in-vitro. In-vivo, the activity of P-PMO was significantly decreased in SCARA1 knock-out mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2?OMe as shown by competitive inhibition and co-localization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that P-PMO and tcDNA have higher binding profiles to the receptor compared to 2?OMe. These results demonstrate receptor-mediated uptake for a range of ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore size, while the smaller nanoparticle underwent faster self-assembly to form more compact 3D scaffolds with smaller porosity but more stable structure. Controlled release studies confirmed the ability of governing simultaneous release of different model drugs with independent release rate from a same scaffold. Cytotoxicity tests showed that all synthesized peptides, copolymers and peptide-copolymer conjugates were biocompatible with SW-620 cell lines and NIH3T3 cell lines. This new type of self-assembled scaffolds combined the advantages of peptide nanofibers and versatile controlled release of polymeric nanoparticles to achieve simultaneous multi-drug loading and controlled release of each drug, uniform distribution and flexibility of hydrogel scaffolds. The investigations in second part were first to design and synthesize organic biocide-loaded nanoparticles for low-leaching wood preservation using a cost-effective one-pot method to synthesize amphiphilic chitosan-g-PMMA nanoparticles loading with ~25-28 wt.% of the fungicide tebuconazole with particle size of ~100 nm diameter by FESEM. FESEM analysis confirmed efficient penetration of nanoparticles throughout the treated wooden stake with dimension of 19 × 19 × 455 mm^3. Leaching studies showed that biocide introduced into sapwood via nanoparticles leached only ~9% compared with the amount leached from tebuconazole solution-treated control, while soil jar tests showed that the nanoparticle-treated wood blocks were effectively protected from biological decay tested against G. trabeum, a brown rot fungus. Copper oxide nanoparticles with and without polymer stabilizers were also investigated to use as inorganic wood preservatives to clarify the factor affecting copper leaching from treated wood. Copper oxide nanoparticles with uniform diameters of ~10 nm and ~50 nm were prepared, and the leachates from southern pine sapwood treated with these nanoparticles were analyzed. It was found by TEM and EDS analysis that significant numbers of nanoparticles leached from the treated wood. The 50 nm nanoparticles leached slightly less than a soluble copper salt control, but 10 nm nanoparticles leached substantially more than the control. The effect of polymer stabilizers on nanoparticle leaching was also investigated. Results showed that polymer stabilizers increased leaching. The trends showed that nanoparticle size was a major factor in copper leaching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembly of carbon nanotip (CNTP) structures on Ni-based catalyst in chemically active inductively coupled plasmas of CH 4 + H 2 + Ar gas mixtures is reported. By varying the process conditions, it appears possible to control the shape, size, and density of CNTPs, content of the nanocrystalline phase in the films, as well as to achieve excellent crystallinity, graphitization, uniformity and vertical alignment of the resulting nanostructures at substrate temperatures 300-500°C and low gas pressures (below 13.2 Pa). This study provides a simple and efficient plasma-enhanced chemical vapor deposition (PECVD) technique for the fabrication of vertically aligned CNTP arrays for electron field emitters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid–solid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular Br⋯Br and Br⋯H bonding. We find that the S⋯S interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be crosslinked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat Substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance. scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film oil flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 mu m) to quantify the process for the preparation of hollow rnicrocapsules. Removal of the core in 0.1 N HCI results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH Values to highlight the drug delivery potential of this system.