980 resultados para interpolating MLS approximation
Resumo:
Most previous investigations on tide-induced watertable fluctuations in coastal aquifers have been based on one-dimensional models that describe the processes in the cross-shore direction alone, assuming negligible along-shore variability. A recent study proposed a two-dimensional approximation for tide-induced watertable fluctuations that took into account coastline variations. Here, we further develop this approximation in two ways, by extending the approximation to second order and by taking into account capillary effects. Our results demonstrate that both effects can markedly influence watertable fluctuations. In particular, with the first-order approximation, the local damping rate of the tidal signal could be subject to sizable errors.
Resumo:
Loss networks have long been used to model various types of telecommunication network, including circuit-switched networks. Such networks often use admission controls, such as trunk reservation, to optimize revenue or stabilize the behaviour of the network. Unfortunately, an exact analysis of such networks is not usually possible, and reduced-load approximations such as the Erlang Fixed Point (EFP) approximation have been widely used. The performance of these approximations is typically very good for networks without controls, under several regimes. There is evidence, however, that in networks with controls, these approximations will in general perform less well. We propose an extension to the EFP approximation that gives marked improvement for a simple ring-shaped network with trunk reservation. It is based on the idea of considering pairs of links together, thus making greater allowance for dependencies between neighbouring links than does the EFP approximation, which only considers links in isolation.
Resumo:
The numerical implementation of the complex image approach for the Green's function of a mixed-potential integralequation formulation is examined and is found to be limited to low values of k(0) rho (in this context k(0) rho = 2 pirho/ lambda(0), where rho is the distance between the source and the field points of the Green's function and lambda(0) is the free space wavelength). This is a clear limitation for problems of large dimension or high frequency where this limit is easily exceeded. This paper examines the various strategies and proposes a hybrid method whereby most of the above problems can be avoided. An efficient integral method that is valid for large k(0) rho is combined with the complex image method in order to take advantage of the relative merits of both schemes. It is found that a wide overlapping region exists between the two techniques allowing a very efficient and consistent approach for accurately calculating the Green's functions. In this paper, the method developed for the computation of the Green's function is used for planar structures containing both lossless and lossy media.
Resumo:
Matrix spalling or crushing is one of the important mechanisms of fiber-matrix interaction of fiber reinforced cementitious composites (FRCC). The fiber pullout mechanisms have been extensively studied for an aligned fiber but matrix failure is rarely investigated since it is thought not to be a major affect. However, for an inclined fiber, the matrix failure should not be neglected. Due to the complex process of matrix spalling, experimental investigation and analytical study of this mechanism are rarely found in literature. In this paper, it is assumed that the load transfer is concentrated within the short length of the inclined fiber from the exit point towards anchored end and follows the exponential law. The Mindlin formulation is employed to calculate the 3D stress field. The simulation gives much information about this field. The 3D approximation of the stress state around an inclined fiber helps to qualitatively understand the mechanism of matrix failure. Finally, a spalling criterion is proposed by which matrix spalling occurs only when the stress in a certain volume, rather than the stress at a small point, exceeds the material strength. This implies some local stress redistribution after first yield. The stress redistribution results in more energy input and higher load bearing capacity of the matrix. In accordance with this hypothesis, the evolution of matrix spalling is demonstrated. The accurate prediction of matrix spalling needs the careful determination of the parameters in this model. This is the work of further study. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
This paper is concerned with evaluating the performance of loss networks. Accurate determination of loss network performance can assist in the design and dimen- sioning of telecommunications networks. However, exact determination can be difficult and generally cannot be done in reasonable time. For these reasons there is much interest in developing fast and accurate approximations. We develop a reduced load approximation that improves on the famous Erlang fixed point approximation (EFPA) in a variety of circumstances. We illustrate our results with reference to a range of networks for which the EFPA may be expected to perform badly.
Resumo:
The measurement of room impulse response (RIR) when there are high background noise levels frequently means one must deal with very low signal-to-noise ratios (SNR). if such is the case, the measurement might yield unreliable results, even when synchronous averaging techniques are used. Furthermore, if there are non-linearities in the apparatus or system time variances, the final SNR can be severely degraded. The test signals used in RIR measurement are often disturbed by non-stationary ambient noise components. A novel approach based on the energy analysis of ambient noise - both in the time and in frequency - was considered. A modified maximum length sequence (MLS) measurement technique. referred to herein as the hybrid MLS technique, was developed for use in room acoustics. The technique consists of reducing the noise energy of the captured sequences before applying the averaging technique in order to improve the overall SNRs and frequency response accuracy. Experiments were conducted under real conditions with different types of underlying ambient noises. Results are shown and discussed. Advantages and disadvantages of the hybrid MLS technique over standard MLS technique are evaluated and discussed. Our findings show that the new technique leads to a significant increase in the overall SNR. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We consider a fluid of hard boomerangs, each composed of two hard spherocylinders joined at their ends at an angle Psi. The resulting particle is nonconvex and biaxial. The occurence of nematic order in such a system has been investigated using Straley's theory, which is a simplificaton of Onsager's second-virial treatment of long hard rods, and by bifurcation analysis. The excluded volume of two hard boomerangs has been approximated by the sum of excluded volumes of pairs of constituent spherocylinders, and the angle-dependent second-virial coefficient has been replaced by a low-order interpolating function. At the so-called Landau point, Psi(Landau)approximate to 107.4 degrees, the fluid undergoes a continuous transition from the isotropic to a biaxial nematic (B) phase. For Psi not equal Psi(Landau) ordering is via a first-order transition into a rod-like uniaxial nematic phase (N(+)) if Psi > Psi(Landau), or a plate-like uniaxial nematic (N(-)) phase if Psi < Psi(Landau). The B phase is separated from the N(+) and N(-) phases by two lines of continuous transitions meeting at the Landau point. This topology of the phase diagram is in agreement with previous studies of spheroplatelets and biaxial ellipsoids. We have checked the accuracy of our theory by performing numerical calculations of the angle-dependent second virial coefficient, which yields Psi(Landau)approximate to 110 degrees for very long rods, and Psi(Landau)approximate to 90 degrees for short rods. In the latter case, the I-N transitions occur at unphysically high packing fractions, reflecting the inappropriateness of the second-virial approximation in this limit.
Resumo:
We have generalized earlier work on anchoring of nematic liquid crystals by Sullivan, and Sluckin and Poniewierski, in order to study transitions which may occur in binary mixtures of nematic liquid crystals as a function of composition. Microscopic expressions have been obtained for the anchoring energy of (i) a liquid crystal in contact with a solid aligning surface; (ii) a liquid crystal in contact with an immiscible isotropic medium; (iii) a liquid crystal mixture in contact with a solid aligning surface. For (iii), possible phase diagrams of anchoring angle versus dopant concentration have been calculated using a simple liquid crystal model. These exhibit some interesting features including re-entrant conical anchoring, for what are believed to be realistic values of the molecular parameters. A way of relaxing the most drastic approximation implicit in the above approach is also briefly discussed.
Resumo:
The Schwinger proper-time method is an effective calculation method, explicitly gauge-invariant and nonperturbative. We make use of this method to investigate the radiatively induced Lorentz- and CPT-violating effects in quantum electrodynamics when an axial-vector interaction term is introduced in the fermionic sector. The induced Lorentz- and CPT-violating Chern-Simons term coincides with the one obtained using a covariant derivative expansion but differs from the result usually obtained in other regularization schemes. A possible ambiguity in the approach is also discussed. (C) 2001 Published by Elsevier Science B.V.
Resumo:
This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.
Resumo:
This paper explores the calculation of fractional integrals by means of the time delay operator. The study starts by reviewing the memory properties of fractional operators and their relationship with time delay. Based on the time response of the Mittag-Leffler function an approximation of fractional integrals consisting of time delayed samples is proposed. The tuning of the approximation is optimized by means of a genetic algorithm. The results demonstrate the feasibility of the new perspective and the limits of their application.
Resumo:
In the framework of multibody dynamics, the path motion constraint enforces that a body follows a predefined curve being its rotations with respect to the curve moving frame also prescribed. The kinematic constraint formulation requires the evaluation of the fourth derivative of the curve with respect to its arc length. Regardless of the fact that higher order polynomials lead to unwanted curve oscillations, at least a fifth order polynomials is required to formulate this constraint. From the point of view of geometric control lower order polynomials are preferred. This work shows that for multibody dynamic formulations with dependent coordinates the use of cubic polynomials is possible, being the dynamic response similar to that obtained with higher order polynomials. The stabilization of the equations of motion, always required to control the constraint violations during long analysis periods due to the inherent numerical errors of the integration process, is enough to correct the error introduced by using a lower order polynomial interpolation and thus forfeiting the analytical requirement for higher order polynomials.