779 resultados para intergenic spacer
Resumo:
To establish the relationships of the lizard- and mammal-infecting Leishmania, we characterized the intergenic spacer region of ribosomal RNA genes from L. tarentolae and L. hoogstraali. The organization of these regions is similar to those of other eukaryotes. The intergenic spacer region was approximately 4 kb in L. tarentolae and 5.5 kb in L. hoogstraali. The size difference was due to a greater number of 63-bp repetitive elements in the latter species. This region also contained another element, repeated twice, that had an inverted octanucleotide with the potential to form a stem-loop structure that could be involved in transcription termination or processing events. The ribosomal RNA gene localization showed a distinct pattern with one chromosomal band (2.2 Mb) for L. tarentolae and two (1.5 and 1.3 Mb) for L. hoogstraali. The study also showed sequence differences in the external transcribed region that could be used to distinguish lizard Leishmania from the mammalian Leishmania. The intergenic spacer region structure features found among Leishmania species indicated that lizard and mammalian Leishmania are closely related and support the inclusion of lizard-infecting species into the subgenus Sauroleishmania proposed by Saf'janova in 1982.
Resumo:
Using PCR-based assays with specific primers for amplification of the ribosomal DNA intergenic spacer region (IGS) and a portion of the mitochondrial DNA small subunit ribosomal RNA gene (mtDNA SSU rRNA), the genetic variability among Verticillium dahliae isolates from olive (Olea europaea) and other host species from Argentina and Brazil was estimated. The derived UPGMA-generated phenograms based upon the restriction fingerprinting data of rDNA IGS products revealed genetic differences, correlating with the host of origin. Isolates infecting olive genetically distinct from those from cocoa (Theobroma cacao) and sunflower (Helianthus annuus). Digestion of mitochondrial DNA SSU rRNA PCR products revealed less variability, distinguishing only one isolate from sunflower. Ribosomal DNA ITS restriction patterns were identical for all isolates of V. dahliae, irrespective of host of origin. These preliminary results may have relevance for Verticillium wilt control practices, possibly reflecting a different evolutionary origin, or reproductive isolation of the pathogen in olive, distinct from populations of other hosts.
Resumo:
Restriction fragment length polymorphism (RFLP) and sequence analyses of the PCR-amplified 16S-23S rDNA intergenic spacer (ITS) were used for differentiating Acidithiobacillus thiooxidans strains from other related acidithiobacilli, including A. ferrooxidans and A. caldus. RFLP fingerprints obtained with AluI, DdeI, HaeIII, HinfI and MspI enabled the differentiation of all Acidithiobacillus reference strains into species groups. The A. thiooxidans strains investigated (metal mine isolates) yielded identical RFLP patterns to the A. thiooxidans type strain (ATCC 19377(T)), except for strain DAMS, which had a distinct pattern for all enzymes tested. Fourteen A. ferrooxidans mine strains were assigned to 3 RFLP groups, the majority of which were grouped with A. ferrooxidans ATCC 23270(T). The spacer region of one representative strain from each of the RFLP groups obtained was subjected to sequence analysis, in addition to eleven additional A. thiooxidans strains isolated from sediment and water samples, and A. caldus DSM 8584(T). The tRNA(IIe) and tRNA(Ala) genes, present in all strains analyzed, showed high sequence similarity. Phylogenetic analysis of the ITS sequences differentiated all three Acidithiobacillus species. Inter- and infraspecific genetic variations detected were mainly due to the size and sequence polymorphism of the ITS3 region. Mantel tests showed no significant correlation between ITS sequence similarity and the geographical origin of strains. The results showed that the 16S-23S rDNA spacer region is a useful target for the development of molecular-based methods aimed at the detection, rapid differentiation and identification of acidithiobacilli. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
A novel database, under the acronym RISSC (Ribosomal Intergenic Spacer Sequence Collection), has been created. It compiles more than 1600 entries of edited DNA sequence data from the 16S–23S ribosomal spacers present in most prokaryotes and organelles (e.g. mitochondria and chloroplasts) and is accessible through the Internet (http://ulises.umh.es/RISSC), where systematic searches for specific words can be conducted, as well as BLAST-type sequence searches. Additionally, a characteristic feature of this region, the presence/absence and nature of tRNA genes within the spacer, is included in all the entries, even when not previously indicated in the original database. All these combined features could provide a useful documentation tool for studies on evolution, identification, typing and strain characterization, among others.
Resumo:
Intergenic spacers of chloroplast DNA (cpDNA) are very useful in phylogenetic and population genetic studies of plant species, to study their potential integration in phylogenetic analysis. The non-coding trnE-trnT intergenic spacer of cpDNA was analyzed to assess the nucleotide sequence polymorphism of 16 Solanaceae species and to estimate its ability to contribute to the resolution of phylogenetic studies of this group. Multiple alignments of DNA sequences of trnE-trnT intergenic spacer made the identification of nucleotide variability in this region possible and the phylogeny was estimated by maximum parsimony and rooted with Convolvulaceae Ipomoea batalas, the most closely related family. Besides, this intergenic spacer was tested for the phylogenetic ability to differentiate taxonomic levels. For this purpose, species from four other families were analyzed and compared with Solanaceae species. Results confirmed polymorphism in the trnE-trnT region at different taxonomic levels.
Resumo:
Geitlerinema amphibium (C. Agardh ex Gomont) Anagn. and G. unigranulatum (Rama N. Singh) Komarek et M. T. P. Azevedo are morphologically close species with characteristics frequently overlapping. Ten strains of Geitlerinema (six of G. amphibium and four of G. unigranulatum) were analyzed by DNA sequencing and transmission electronic and optical microscopy. Among the investigated strains, the two species were not separated with respect to cellular dimensions, and cellular width was the most varying characteristic. The number and localization of granules, as well as other ultrastructural characteristics, did not provide a means to discriminate between the two species. The two species were not separated either by geography or environment. These results were further corroborated by the analysis of the cpcB-cpcA intergenic spacer (PC-IGS) sequences. Given the fact that morphology is very uniform, plus the coexistence of these populations in the same habitat, it would be nearly impossible to distinguish between them in nature. On the other hand, two of the analyzed strains were distinct from all others based on the PC-IGS sequences, in spite of their morphological similarity. PC-IGS sequences indicate that these two strains could be a different species of Geitlerinema. Using morphology, cell ultrastructure, and PC-IGS sequences, it is not possible to distinguish G. amphibium and G. unigranulatum. Therefore, they should be treated as one species, G. unigranulatum as a synonym of G. amphibium.
Resumo:
Xylella fastidiosa is a vector-borne, plant-pathogenic bacterium that causes disease in citrus (citrus variegated chlorosis [CVC]) and coffee (coffee leaf scorch [CLS]) plants in Brazil. CVC and CLS occur sympatrically and share leafhopper vectors; thus, determining whether X. fastidiosa isolates can be dispersed from one crop to another and cause disease is of epidemiological importance. We sought to clarify the genetic and biological relationships between CVC- and CLS-causing X. fastidiosa isolates. We used cross-inoculation bioassays and microsatellite and multilocus sequence typing (MLST) approaches to determine the host range and genetic structure of 26 CVC and 20 CLS isolates collected from different regions in Brazil. Our results show that citrus and coffee X. fastidiosa isolates are biologically distinct. Cross-inoculation tests showed that isolates causing CVC and CLS in the field were able to colonize citrus and coffee plants, respectively, but not the other host, indicating biological isolation between the strains. The microsatellite analysis separated most X. fastidiosa populations tested on the basis of the host plant from which they were isolated. However, recombination among isolates was detected and a lack of congruency among phylogenetic trees was observed for the loci used in the MLST scheme. Altogether, our study indicates that CVC and CLS are caused by two biologically distinct strains of X. fastidiosa that have diverged but are genetically homogenized by frequent recombination.
Resumo:
The Fungal Ribosomal Intergenic Spacer Analysis (F-RISA) was used to characterize soil fungal communities from three ecosystems of Araucaria angustifolia from Brazil: a native forest and two replanted forest ecosystems, one of them with a past history of wildfire. The arbuscular mycorrhizal fungi (AMF) infection was evaluated in Araucaria roots of 18-month-old axenic plants previously inoculated with soils collected from those areas in a greenhouse experiment. The principal component analysis of F-RISA profiles showed different soil fungal community between the three studied areas. Sixty three percent of F-RISA fragments amplified in the soil and the substrate samples presented lengths between 500 and 700 bp. The number of Operational Taxonomic Units (OTUs) was 34 for soil and 38 for substrate, however, more fragments were detected in soil (214) than in substrate (163). An in silico F-RISA analysis to compare our data with ITS1-5.8S-ITS2 sequences from NCBI database showed the presence of Ascomycota, Basidiomycota and Glomeromycota among the soil and substrate fungal communities. AMF infection was higher in plants inoculated with soil from the native forest and the replanted forest with wildfire, both presenting similar chemical characteristics but with different disturbance levels. These results indicate that soil chemical composition may influence the soil fungal community structures rather than the anthropogenic or fire disturbances.
Resumo:
Although antibodies to Bartonella henselae have been described in all neotropical felid species, DNA has been detected in only one species, Leopard us wiedii. The aim of this study was to determine whether DNA of Bartonella spp. could be detected in blood of other captive neotropical felids and evaluate risk factors and hematological findings associated with infection. Blood samples were collected from 57 small felids, including 1 Leopard us geoffroyi, 17 L wiedii, 22 Leopardus tigrinus, 14 Leopardus pardalis, and 3 Puma yagouaroundi; 10 blood samples from Panthera onca were retrieved from blood banks. Complete blood counts were performed on blood samples from small felids, while all samples were evaluated by PCR. DNA extraction was confirmed by amplification of the cat GAPDH gene. Bartonella spp. were assessed by amplifying a fragment of their 16S-23S rRNA intergenic spacer region; PCR products were purified and sequenced. For the small neotropical felids, risk factors [origin (wild-caught or zoo-born), gender, felid species, and flea exposure) were evaluated using exact multiple logistic regression. Hematological findings (anemia, polycythemia/hyperproteinemia, leukocytosis and leukopenia) were tested for association with infection using Fisher`s exact test. The 635 bp product amplified from 10 samples (10/67 = 14.92%) was identified as B. henselae by sequencing. Small neotropical felid males were more likely to be positive than females (95% CI = 0.00-0.451, p = 0.0028), however other analyzed variables were not considered risk factors (p > 0.05). Hematological abnormalities were not associated with infection (p > 0.05). This is the first report documenting B. henselae detection by PCR in several species of neotropical felids. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the carnivorous plant family Lentibulariaceae, the bladderwort lineage (Utricularia and Genlisea) is substantially more species-rich and morphologically divergent than its sister lineage, the butterworts (Pinguicula). Bladderworts have a relaxed body plan that has permitted the evolution of terrestrial, epiphytic, and aquatic forms that capture prey in intricately designed suction bladders or corkscrew-shaped lobster-pot traps. In contrast, the flypaper-trapping butterworts maintain vegetative structures typical of angiosperms. We found that bladderwort genomes evolve significantly faster across seven loci (the trnL intron, the second trnL exon, the trnL-F intergenic spacer, the rps16 intron, rbcL, coxI, and 5.8S rDNA) representing all three genomic compartments. Generation time differences did not show a significant association. We relate these findings to the contested speciation rate hypothesis, which postulates a relationship between increased nucleotide substitution and increased cladogenesis. (C) 2002 The Willi Hennig Society.
Resumo:
A rapid and reliable polymerase chain reaction (PCR)-based protocol was developed for detecting zygosity of the 1BL/1RS translocation in hexaploid wheat. The protocol involved a multiplex PCR with 2 pairs of oligonucleotide primers, rye-specific Ris-1 primers, and consensus 5S intergenic spacer (IGS) primers, and digestion of the PCR products with the restriction enzyme, MseI. A small piece of alkali-treated intact leaf tissue is used as a template for the PCR, thereby eliminating the necessity for DNA extraction. The test is simple, highly sensitive, and rapid compared with the other detection systems of 1BS1RS heterozygotes in hexaploid wheat. PCR results were confirmed with AFLP analyses. Diagnostic tests for 1BL/1RS translocation based on Sec-1-specific ELISA, screening for chromosome arm 1RS controlled rust resistance locus Yr9, and the PCR test differed in their ability to detect heterozygotes. The PCR test and rust test detected more heterozygotes than the ELISA test. The PCR test is being used to facilitate S1 family recurrent selection in the Germplasm Enhancement Program of the Australian Northern Wheat Improvement Program. A combination of the PCR zygosity test with other markers currently being implemented in the breeding program makes this test economical for 1BL/1RS characterisation of S1 families.
Resumo:
Applied and Environmental Microbiology, Vol. 73, No.4
Resumo:
This work aimed to assess pathogenic potential and clonal relatedness of Aeromonas sp. and Vibrio cholerae isolates recovered during a diarrhea outbreak in Brazil. Clinical and environmental isolates were investigated for the presence of known pathogenic genes and clonal relatedness was assessed by intergenic spacer region (ISR) 16S-23S amplification. Four Aeromonas genes (lip, exu, gcat, flaA/B) were found at high overall frequency in both clinical and environmental isolates although the lip gene was specifically absent from selected species. A fifth gene, aerA, was rarely found in A. caviae, the most abundant species. The ISR profile revealed high heterogeneity among the Aeromonas isolates and no correlation with species identification. In contrast, in all the V. cholerae isolates the four genes investigated (ctxA, tcpA, zot and ace) were amplified and revealed homogeneous ISR and RAPD profiles. Although Aeromonas isolates were the major enteric pathogen recovered, their ISR profiles are not compatible with a unique cause for the diarrhea events, while the clonal relationship clearly implicates V. cholerae in those cases from which it was isolated. These results reinforce the need for a better definition of the role of aeromonads in diarrhea and whether they benefit from co-infection with V. cholerae.
Resumo:
Ribotyping has been widely used to characterise the seventh pandemic clone including South American and O139 variants which appeared in 1991 and 1992 respectively. To reveal the molecular basis of ribotype variation we analysed the rrn operons and their flanking regions. All but one variation detected by BglI, the most discriminatory enzyme, was found to be due to changes within the rrn operons, resulting from recombination between operons. The recombinants are detected because of the presence of a BglI site in the 16S gene in three of the nine rrn operons and/or changes of intergenic spacer types of which four variants were identified. As the frequency of rrn recombination is high, ribotyping becomes a less useful tool for evolutionary studies and long term monitoring of the pathogenic clones of Vibrio cholerae as variation could undergo precise reversion by the same recombination event.
Resumo:
The aim of this study was to evaluate the use of one of the molecular typing methods such as PCR (polymerase chain reaction) following by RFLP (restriction fragment length polymorphism) analysis in the identification of Candida species and then to differentiate the identified azole susceptible and resistant Candida albicans strains by using AP-PCR (arbitrarily primed-polymerase chain reaction). The identification of Candida species by PCR and RFLP analysis was based on the size and primary structural variation of rDNA intergenic spacer regions (ITS). Forty-four clinical Candida isolates comprising 5 species were included to the study. The amplification products were digested individually with 3 different restriction enzymes: HaeIII, DdeI, and BfaI. All the isolates tested yielded the expected band patterns by PCR and RFLP analysis. The results obtained from this study demonstrate that Candida species can be differentiated as C. albicans and non-C. albicans strains only by using HaeIII restriction enzyme and BfaI maintains the differentiation of these non-C. albicans species. After identification Candida species with RFLP analysis, C. albicans strains were included to the AP-PCR test. By using AP-PCR, fluconazole susceptible and resistant strains were differentiated. Nine fluconazole susceptible and 24 fluconazole resistant C. albicans were included to the study. Fluconazole resistant strains had more bands when evaluating with the agarose gel electrophoresis but there were no specific discriminatory band patterns to warrant the differentiation of the resistance. The identification of Candida species with the amplification of intergenic spacer region and RFLP analysis is a practical, short, and a reliable method when comparing to the conventional time-consuming Candida species identification methods. The fluconazole susceptibility testing with AP-PCR seems to be a promising method but further studies must be performed for more specific results.