978 resultados para intelligent algorithms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a developing interest in smart grids, the possibility of significantly enhanced performance from remote measurements and intelligent controls. For transmission the use of PMU signals from remote sites and direct load shed controls can give significant enhancement for large system disturbances rather than relying on local measurements and linear controls. This lecture will emphasize what can be found from remote measurements and the mechanisms to get a smarter response to major disturbances. For distribution systems there has been a significant history in the area of distribution reconfiguration automation. This lecture will emphasize the incorporation of Distributed Generation into distribution networks and the impact on voltage/frequency control and protection. Overall the performance of both transmission and distribution will be impacted by demand side management and the capabilities built into the system. In particular, we consider different time scales of load communication and response and look to the benefits for system, energy and lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main aims in artificial intelligent system is to develop robust and efficient optimisation methods for Multi-Objective (MO) and Multidisciplinary Design (MDO) design problems. The paper investigates two different optimisation techniques for multi-objective design optimisation problems. The first optimisation method is a Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The second method combines the concepts of Nash-equilibrium and Pareto optimality with Multi-Objective Evolutionary Algorithms (MOEAs) which is denoted as Hybrid-Game. Numerical results from the two approaches are compared in terms of the quality of model and computational expense. The benefit of using the distributed hybrid game methodology for multi-objective design problems is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The practice of robotics and computer vision each involve the application of computational algorithms to data. The research community has developed a very large body of algorithms but for a newcomer to the field this can be quite daunting. For more than 10 years the author has maintained two open-source MATLAB® Toolboxes, one for robotics and one for vision. They provide implementations of many important algorithms and allow users to work with real problems, not just trivial examples. This new book makes the fundamental algorithms of robotics, vision and control accessible to all. It weaves together theory, algorithms and examples in a narrative that covers robotics and computer vision separately and together. Using the latest versions of the Toolboxes the author shows how complex problems can be decomposed and solved using just a few simple lines of code. The topics covered are guided by real problems observed by the author over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes over 1000 MATLAB® and Simulink® examples and figures. The book is a real walk through the fundamentals of mobile robots, navigation, localization, arm-robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and multi-view geometry, and finally bringing it all together with an extensive discussion of visual servo systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On obstacle-cluttered construction sites where heavy equipment is in use, safety issues are of major concern. The main objective of this paper is to develop a framework with algorithms for obstacle avoidance and path planning based on real-time three-dimensional job site models to improve safety during equipment operation. These algorithms have the potential to prevent collisions between heavy equipment vehicles and other on-site objects. In this study, algorithms were developed for image data acquisition, real-time 3D spatial modeling, obstacle avoidance, and shortest path finding and were all integrated to construct a comprehensive collision-free path. Preliminary research results show that the proposed approach is feasible and has the potential to be used as an active safety feature for heavy equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the legal domain, it is rare to find solutions to problems by simply applying algorithms or invoking deductive rules in some knowledge‐based program. Instead, expert practitioners often supplement domain‐specific knowledge with field experience. This type of expertise is often applied in the form of an analogy. This research proposes to combine both reasoning with precedents and reasoning with statutes and regulations in a way that will enhance the statutory interpretation task. This is being attempted through the integration of database and expert system technologies. Case‐based reasoning is being used to model legal precedents while rule‐based reasoning modules are being used to model the legislation and other types of causal knowledge. It is hoped to generalise these findings and to develop a formal methodology for integrating case‐based databases with rule‐based expert systems in the legal domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews a variety of advanced signal processing algorithms that have been developed at the University of Southampton as part of the Prometheus (Programme for European traffic flow with highest efficiency and unprecedented safety) programme to achieve an intelligent driver warning system (IDWS). The IDWS includes the detection of road edges, lanes, obstacles and their tracking and identification, estimates of time to collision, and behavioural modelling of drivers for a variety of scenarios. The underlying algorithms are briefly discussed in support of the IDWS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews a variety of advanced signal processing algorithms that have been developed at the University of Southampton as part of the Prometheus (PROgraMme for European Traffic flow with Highest Efficiency and Unprecedented Safety) research programme to achieve an intelligent driver warning system (IDWS). The IDWS includes: visual detection of both generic obstacles and other vehicles, together with their tracking and identification, estimates of time to collision and behavioural modelling of drivers for a variety of scenarios. These application areas are used to show the applicability of neurofuzzy techniques to the wide range of problems required to support an IDWS, and for future fully autonomous vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a self Adaptive Migration Model for Genetic Algorithms, where parameters of population size, the number of points of crossover and mutation rate for each population are fixed adaptively. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions, when compared with Island model GA(IGA) and Simple GA(SGA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neal M J, Boyce D, Rowland J J, Lee M H, and Olivier P L. Robotic grasping by showing: an experimental comparison of two novel algorithms. In Proceedings of IFAC - SICICA'97, pages 345-350, Annecy, France, 1997.