957 resultados para integrated assessment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the pastoral production systems, mobility remains the main technique used to meet livestock’s fodder requirements. Currently, with growing challenges on the pastoral production systems, there is urgent need for an in-depth understanding of how pastoralists continue to manage their grazing resources and how they determine their mobility strategies. This study examined the Borana pastoralists’ regulation of access to grazing resources, mobility practices and cattle reproductive performances in three pastoral zones of Borana region of southern Ethiopia. The central objective of the study was to contribute to the understanding of pastoral land use strategies at a scale relevant to their management. The study applied a multi-scalar methodological approach that allowed zooming in from communal to individual herd level. Through participatory mapping that applied Google Earth image print out as visual aid, the study revealed that the Borana pastoralists conceptualized their grazing areas as distinctive grazing units with names, borders, and specific characteristics. This knowledge enables the herders to communicate the condition of grazing resources among themselves in a precise way which is important in management of livestock mobility. Analysis of grazing area use from the participatory maps showed that the Borana pastoralists apportion their grazing areas into categories that are accessed at different times of the year (temporal use areas). This re-organization is an attempt by the community to cope with the prevailing constraints which results in fodder shortages especially during the dry periods. The re-organization represents a shift in resource use system, as the previous mobility practice across the ecologically varied zones of the rangelands became severely restricted. Grazing itineraries of 91 cattle herds for over 16 months obtained using the seasonal calendar interviews indicated that in the areas with the severest mobility constraints, the herders spent most of their time in the year round use areas that are within close proximity to the settlements. A significant change in mobility strategy was the disallowing of foora practice by the communities in Dirre and Malbe zones in order to reduce competition. With the reduction in mobility practices, there is a general decline in cattle reproductive parameters with the areas experiencing the severest constraints showing the least favourable reproductive performances. The study concludes that the multi-scalar methodology was well suited to zoom into pastoral grazing management practices from communal to individual herd levels. Also the loss of mobility in the Borana pastoral system affects fulfilment of livestock feed requirements thus resulting in reduced reproductive performances and herd growth potentials. While reversal of the conditions of the situations in the Borana rangelands is practically unfeasible, the findings from this research underscore the need to protect the remaining pastoral lands since the pastoral production system remains the most important livelihood option for the majority of the Borana people. In this regards the study emphasises the need to adopt and domesticate regional and international policy frameworks such as that proposed by the African Union in 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the risks of a shutdown of the thermohaline circulation (THC) for the climate system, for ecosystems in and around the North Atlantic as well as for fisheries and agriculture by way of an Integrated Assessment. The climate model simulations are based on greenhouse gas scenarios for the 21st century and beyond. A shutdown of the THC, complete by 2150, is triggered if increased freshwater input from inland ice melt or enhanced runoff is assumed. The shutdown retards the greenhouse gas-induced atmospheric warming trend in the Northern Hemisphere, but does not lead to a persistent net cooling. Due to the simulated THC shutdown the sea level at the North Atlantic shores rises by up to 80 cm by 2150, in addition to the global sea level rise. This could potentially be a serious impact that requires expensive coastal protection measures. A reduction of marine net primary productivity is associated with the impacts of warming rather than a THC shutdown. Regional shifts in the currents in the Nordic Seas could strongly deteriorate survival chances for cod larvae and juveniles. This could lead to cod fisheries becoming unprofitable by the end of the 21st century. While regional socioeconomic impacts might be large, damages would be probably small in relation to the respective gross national products. Terrestrial ecosystem productivity is affected much more by the fertilization from the increasing CO2 concentration than by a THC shutdown. In addition, the level of warming in the 22nd to 24th century favours crop production in northern Europe a lot, no matter whether the THC shuts down or not. CO2 emissions corridors aimed at limiting the risk of a THC breakdown to 10% or less are narrow, requiring departure from business-as-usual in the next few decades. The uncertainty about THC risks is still high. This is seen in model analyses as well as in the experts’ views that were elicited. The overview of results presented here is the outcome of the Integrated Assessment project INTEGRATION.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development and first results of the “Community Integrated Assessment System” (CIAS), a unique multi-institutional modular and flexible integrated assessment system for modelling climate change. Key to this development is the supporting software infrastructure, SoftIAM. Through it, CIAS is distributed between the community of institutions which has each contributed modules to the CIAS system. At the heart of SoftIAM is the Bespoke Framework Generator (BFG) which enables flexibility in the assembly and composition of individual modules from a pool to form coupled models within CIAS, and flexibility in their deployment onto the available software and hardware resources. Such flexibility greatly enhances modellers’ ability to re-configure the CIAS coupled models to answer different questions, thus tracking evolving policy needs. It also allows rigorous testing of the robustness of IA modelling results to the use of different component modules representing the same processes (for example, the economy). Such processes are often modelled in very different ways, using different paradigms, at the participating institutions. An illustrative application to the study of the relationship between the economy and the earth’s climate system is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An underwater gas pipeline is the portion of the pipeline that crosses a river beneath its bottom. Underwater gas pipelines are subject to increasing dangers as time goes by. An accident at an underwater gas pipeline can lead to technological and environmental disaster on the scale of an entire region. Therefore, timely troubleshooting of all underwater gas pipelines in order to prevent any potential accidents will remain a pressing task for the industry. The most important aspect of resolving this challenge is the quality of the automated system in question. Now the industry doesn't have any automated system that fully meets the needs of the experts working in the field maintaining underwater gas pipelines. Principle Aim of this Research: This work aims to develop a new system of automated monitoring which would simplify the process of evaluating the technical condition and decision making on planning and preventive maintenance and repair work on the underwater gas pipeline. Objectives: Creation a shared model for a new, automated system via IDEF3; Development of a new database system which would store all information about underwater gas pipelines; Development a new application that works with database servers, and provides an explanation of the results obtained from the server; Calculation of the values MTBF for specified pipelines based on quantitative data obtained from tests of this system. Conclusion: The new, automated system PodvodGazExpert has been developed for timely and qualitative determination of the physical conditions of underwater gas pipeline; The basis of the mathematical analysis of this new, automated system uses principal component analysis method; The process of determining the physical condition of an underwater gas pipeline with this new, automated system increases the MTBF by a factor of 8.18 above the existing system used today in the industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to investigate the presence of contaminants in the mussel Perna perna from Sao Sebastiao Channel, São Paulo, Brazil, and to evaluate the effects of these contaminants on these organisms at biochemical (catalase [CAT], glutathione-S-transferase [GST], and cholinesterase [ChE]), cellular (neutral red retention time [NRRT] assay), and physiological (cardiac monitoring) levels. Two sampling surveys were performed (winter of 2001 and summer of 2002) at six stations along the channel: Cigarras, station 1; late Clube de Ilhabela, station 2; Oil Terminal, station 3; Toque Toque, station 4; Ponta da Sela, station 5 (reference station); and Taubate, station 6. Differences in CAT activity were observed between mussels from stations 3 and 5 during the winter, but no differences were detected in the summer. No differences in GST activity were found among stations during the winter, although animals from station 3 showed higher activity during the summer. The ChE activity was significantly higher in the mussels from stations I and 2 during the winter and from stations I and 3 during the summer. Organisms from stations I through 4 showed statistically lower NRRT in both seasons. Similar heart rates were observed in the mussels from all stations. Hydrocarbons were detected in organisms from all the stations in both seasons. During the winter, higher polycyclic aromatic hydrocarbon (PAH) levels were observed in organisms from station 3, whereas during the summer, higher levels of metals were found in organisms from stations 1, 3, and 4. The multivariate analyses showed a strong influence of PAHs on the winter biological results, but metals showed higher influence on these responses in the summer, indicating multiple contaminant sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of maritime transport and oil exploitation activities may increase the risk of oil spills. Thus, plans and actions to prevent or mitigate impacts are needed to minimize the effects caused by oil. However, tools used worldwide to support contingency plans have not been integrated, thus leading to failure in establishing priority areas. This investigation aimed to develop indices of environmental vulnerability to oil (IEVO), by combining information about environmental sensibility to oil and results of numerical modeling of spilled oil. To achieve that, a case study concerning to oil spills scenarios in a subtropical coastal area was designed, and IEVOs were calculated and presented in maps, in order to make the information about the areas' vulnerability more easily visualized. For summer, the extension of coastline potentially affected by oil was approximately 150. km, and most of the coastline presented medium to high vulnerability. For winter, 230. km coastline would be affected, from which 75% were classified as medium to high vulnerability. Thus, IEVO maps allowed a rapid and clearer interpretation of the vulnerability of the mapped region, facilitating the planning process and the actions in response to an oil spill. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic activities have increased phosphorus (P) loading in tributaries to the Laurentian Great Lakes resulting in eutrophication in small bays to most notably, Lake Erie. Changes to surface water quality from P loading have resulted in billions of dollars in damage and threaten the health of the world’s largest freshwater resource. To understand the factors affecting P delivery with projected increasing urban lands and biofuels expansion, two spatially explicit models were coupled. The coupled models predict that the majority of the basin will experience a significant increase in urban area P sources while the agriculture intensity and forest sources of P will decrease. Changes in P loading across the basin will be highly variable spatially. Additionally, the impacts of climate change on high precipitation events across the Great Lakes were examined. Using historical regression relationships on phosphorus concentrations, key Great Lakes tributaries were found to have future changes including decreasing total loads and increases to high-flow loading events. The urbanized Cuyahoga watersheds exhibits the most vulnerability to these climate-induced changes with increases in total loading and storm loading , while the forested Au Sable watershed exhibits greater resilience. Finally, the monitoring network currently in place for sampling the amount of phosphorus entering the U.S. Great Lakes was examined with a focus on the challenges to monitoring. Based on these interviews, the research identified three issues that policy makers interested in maintaining an effective phosphorus monitoring network in the Great Lakes should consider: first, that the policy objectives driving different monitoring programs vary, which results in different patterns of sampling design and frequency; second, that these differences complicate efforts to encourage collaboration; and third, that methods of funding sampling programs vary from agency to agency, further complicating efforts to generate sufficient long-term data to improve our understanding of phosphorus into the Great Lakes. The dissertation combines these three areas of research to present the potential future impacts of P loading in the Great Lakes as anthropogenic activities, climate and monitoring changes. These manuscripts report new experimental data for future sources, loading and climate impacts on phosphorus.