1000 resultados para insect distribution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In light of the Central American Initiative for the control of Chagas disease, efforts were made on the part of Costa Rican and Nicaraguan teams, working separately, to determine the present status of Rhodnius pallescens in areas close to the common border of the two countries, where the insect has appeared within the last few years. The opportunity was also used to establish whether R. prolixus, a vector present in some areas of Nicaragua, has been introduced in recent years into Costa Rica with Nicaraguan immigrants. It became evident that wild adults of R. pallescens are common visitors to houses in different towns of a wide area characterized as a humid, warm lowland, on both sides of the frontier. Up to the present, this bug has been able to colonize a small proportion of human dwellings only on the Nicaraguan side. There was strong evidence that the visitation of the adult bug to houses is related to the attraction of this species to electric lights. There were no indications of the presence of R. prolixus either in Nicaragua or in Costa Rica in this area of the Caribbean basin. Triatoma dimidiata, a widespread domestic species in both countries, was totally absent in the explored areas of Costa Rica but occasionally occurs on the Nicaraguan side. Serological surveys in children of both areas showed that transmission of Chagas disease takes place in a rather small degree in Costa Rica and more commonly in Nicaragua, indicating that R. pallescens could be a potential threat as a vector in this particular region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Brazil, visceral leishmaniasis (VL) is caused by Leishmania chagasi parasites that are transmitted to man through the bites of infected females of Lutzomyia longipalpis sand flies. In order to evaluate transmission risk and to clarify the epidemiology of this tropical disease, studies focused on the vector and favorable environmental conditions are of fundamental importance. In this work, we surveyed the phlebotomine sand fly fauna in Janaúba, a Brazilian municipality that is endemic for VL. During a two-year period, entomological captures were performed monthly in 15 districts with high, moderate and low profiles of VL transmission. A total of 14,591 phlebotomine sand flies were captured (92% L. longipalpis), with a predominance of males. Most specimens were captured in the peri-domicile setting, although the number of specimens captured in the intra-domicile setting emphasises the anthropophilic behaviour of this insect. The population density of L. longipalpis was modulated by climate variations, particularly with clear increases immediately after the rainy season. However, the pattern of distribution did not coincide with the occurrence of human or canine cases of VL. This suggests that the eco-epidemiology of VL is particular to each area of transmission and must be taken into account during the design of public health control actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anophelines harbour a diverse microbial consortium that may represent an extended gene pool for the host. The proposed effects of the insect microbiota span physiological, metabolic and immune processes. Here we synthesise how current metagenomic tools combined with classical culture-dependent techniques provide new insights in the elucidation of the role of the Anopheles-associated microbiota. Many proposed malaria control strategies have been based upon the immunomodulating effects that the bacterial components of the microbiota appear to exert and their ability to express anti-Plasmodium peptides. The number of identified bacterial taxa has increased in the current “omics” era and the available data are mostly scattered or in “tables” that are difficult to exploit. Published microbiota reports for multiple anopheline species were compiled in an Excel® spreadsheet. We then filtered the microbiota data using a continent-oriented criterion and generated a visual correlation showing the exclusive and shared bacterial genera among four continents. The data suggested the existence of a core group of bacteria associated in a stable manner with their anopheline hosts. However, the lack of data from Neotropical vectors may reduce the possibility of defining the core microbiota and understanding the mosquito-bacteria interactive consortium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trypanosoma cruziis the aetiological agent of Chagas disease, which affects approximately eight million people in the Americas. This parasite exhibits genetic variability, with at least six discrete typing units broadly distributed in the American continent. T. cruziI (TcI) shows remarkable genetic diversity; a genotype linked to human infections and a domestic cycle of transmission have recently been identified, hence, this strain was named TcIDom. The aim of this work was to describe the spatiotemporal distribution of TcI subpopulations across humans, insect vectors and mammalian reservoirs in Colombia by means of molecular typing targeting the spliced leader intergenic region of mini-exon gene. We analysed 101 TcI isolates and observed a distribution of sylvatic TcI in 70% and TcIDom in 30%. In humans, the ratio was sylvatic TcI in 60% and TcIDom in 40%. In mammal reservoirs, the distribution corresponded to sylvatic TcI in 96% and TcIDom in 4%. Among insect vectors, sylvatic TcI was observed in 48% and TcIDom in 52%. In conclusion, the circulation of TcIDom is emerging in Colombia and this genotype is still adapting to the domestic cycle of transmission. The epidemiological and clinical implications of these findings are discussed herein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a better understanding of the complex coevolutionary processes between hosts and parasites, accurate identification of the actors involved in the interaction is of fundamental importance. Blood parasites of the Order Haemosporidia, responsible for malaria, have become the focus of a broad range of studies in evolutionary biology. Interestingly, molecular-based studies on avian malaria have revealed much higher species diversity than previously inferred with morphology. Meanwhile, studies on bat haemosporidian have been largely neglected. In Europe, only one genus (Polychromophilus) and two species have been morphologically described. To evaluate the presence of potential cryptic species and parasite prevalence, we undertook a molecular characterization of Polychromophilus in temperate zone bats. We used a nested-PCR approach on the cytochrome b mitochondrial gene to detect the presence of parasites in 237 bats belonging to four different species and in the dipteran bat fly Nycteribia kolenatii, previously described as being the vector of Polychromophilus. Polychromophilus murinus was found in the four bat species and in the insect vector with prevalence ranging from 4% for Myotis myotis to 51% for M. daubentoni. By sequencing 682 bp, we then investigated the phylogenetic relationships of Polychromophilus to other published malarial lineages. Seven haplotypes were found, all very closely related, suggesting the presence of a single species in our samples. These haplotypes formed a well-defined clade together with Haemosporidia of tropical bats, revealing a worldwide distribution of this parasite mostly neglected by malarial studies since the 1980s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may be related to the fundamental differences in antioxidant defense between these animals and other metazoans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of transposable elements (TEs) in a genome reflects a balance between insertion rate and selection against new insertions. Understanding the distribution of TEs therefore provides insights into the forces shaping the organization of genomes. Past research has shown that TEs tend to accumulate in genomic regions with low gene density and low recombination rate. However, little is known about the factors modulating insertion rates across the genome and their evolutionary significance. One candidate factor is gene expression, which has been suggested to increase local insertion rate by rendering DNA more accessible. We test this hypothesis by comparing the TE density around germline- and soma-expressed genes in the euchromatin of Drosophila melanogaster. Because only insertions that occur in the germline are transmitted to the next generation, we predicted a higher density of TEs around germline-expressed genes than soma-expressed genes. We show that the rate of TE insertions is greater near germline- than soma-expressed genes. However, this effect is partly offset by stronger selection for genome compactness (against excess noncoding DNA) on germline-expressed genes. We also demonstrate that the local genome organization in clusters of coexpressed genes plays a fundamental role in the genomic distribution of TEs. Our analysis shows that-in addition to recombination rate-the distribution of TEs is shaped by the interaction of gene expression and genome organization. The important role of selection for compactness sheds a new light on the role of TEs in genome evolution. Instead of making genomes grow passively, TEs are controlled by the forces shaping genome compactness, most likely linked to the efficiency of gene expression or its complexity and possibly their interaction with mechanisms of TE silencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the risk of transmission of vector-borne diseases, regular updates of the geographic distribution of insect vectors are required. In the archipelago of Cape Verde, nine mosquito species have been reported. Of these, four are major vectors of diseases that have been present in the archipelago: yellow fever, lymphatic filariasis, malaria and, currently, an outbreak of dengue. In order to assess variation in mosquito biodiversity, we have carried out an update on the distribution of the mosquito species in Cape Verde, based on an enquiry of 26 unpublished technical reports (1983-2006) and on the results of an entomological survey carried out in 2007. Overall, there seems to be a general trend for an expansion of biological diversity in the islands. Mosquito species richness was negatively correlated with the distance of the islands from the mainland but not with the size of the islands. Human- and/or sporadic climatic-mediated events of dispersal may have contributed to a homogenization of species richness regardless of island size but other ecological factors may also have affected the mosquito biogeography in the archipelago. An additional species, Culex perexiguus, was collected for the first time in the archipelago during the 2007 survey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 Insect pests, biological invasions and climate change are considered to representmajor threats to biodiversity, ecosystem functioning, agriculture and forestry.Deriving hypothesis of contemporary and/or future potential distributions of insectpests and invasive species is becoming an important tool for predicting the spatialstructure of potential threats.2 The western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is apest of maize in North America that has invaded Europe in recent years, resultingin economic costs in terms of maize yields in both continents. The present studyaimed to estimate the dynamics of potential areas of invasion by the WCR under aclimate change scenario in the Northern Hemisphere. The areas at risk under thisscenario were assessed by comparing, using complementary approaches, the spatialprojections of current and future areas of climatic favourability of the WCR. Spatialhypothesis were generated with respect to the presence records in the native rangeof the WCR and physiological thresholds from previous empirical studies.3 We used a previously developed protocol specifically designed to estimatethe climatic favourability of the WCR. We selected the most biologicallyrelevant climatic predictors and then used multidimensional envelope (MDE) andMahalanobis distances (MD) approaches to derive potential distributions for currentand future climatic conditions.4 The results obtained showed a northward advancement of the upper physiologicallimit as a result of climate change, which might increase the strength of outbreaksat higher latitudes. In addition, both MDE and MD outputs predict the stability ofclimatic favourability for the WCR in the core of the already invaded area in Europe,which suggests that this zone would continue to experience damage from this pestin Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pattern of attack of a galling insect reveals an unexpected preference-performance linkage on medium-sized resources. The Plant Vigor Hypothesis (PVH) predicts oviposition preference and higher offspring performance on longer and fast-growing shoots, and although several studies have tested its predictions, long-term studies concerning the patterns of host selection by galling species are still lacking. The PVH was tested in this study using Bauhinia brevipes (Fabaceae) as the host of a leaf gall midge, Asphondylia microcapillata (Diptera, Cecidomyiidae) during three consecutive years. Shoots were collected from the same 80 plants between 2001 and 2003 and shoot length, number of healthy and galled leaves, gall number, and mortality factors were recorded. Nearly 600 galls were found on the 5,800 shoots collected. Medium-sized shoots supported from 46 to 70% of all galls, with greater gall survival rate in 2002 and 2003. A decrease in parasitism rate coupled with an increase in gall predation lead to a constant similar gall survivorship rate in all years (x = 22.7%). Although gall abundance varied among years (122 in 2001, 114 in 2002 and 359 in 2003) preference for longer shoots was not observed because the percentage of galled shoots and galled leaves were higher on medium shoot length classes in all years. The observed distribution of gall abundance and galled shoots were always greater than the expected distribution on medium shoot length classes. These findings do not support the PVH, and show that A. microcapillata can maximize the female preference and larval performance on medium-sized shoots of B. brevipes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonality in insect abundance in the "Cerrado" of Goiás State, Brazil. Many studies have provided evidence that tropical insects undergo seasonal changes in abundance and that this is partly due to alternation between the dry and rainy seasons. In the Brazilian "Cerrado" (savannah), this season alternation is particularly evident. The purpose of this work was to study the seasonal abundance of insects in a "Cerrado" area in the municipality of Pirenópolis, Goiás State, Brazil. The insects were captured fortnightly using a light trap between September 2005 and August 2006. The insects collected were separated at the order level and counted. Faunistic analysis was performed to select the predominant insect orders, a multiple linear regression to examine the relation between climatic variables (temperature and precipitation) with the abundance of insects and a circular distribution analysis to evaluate the existence of seasonality in the abundance of insect orders. A total of 34,741 insect specimens were captured, belonging to 19 orders. The orders with the greatest number of specimens were Hymenoptera (8,022), Coleoptera (6,680), Diptera (6,394), Lepidoptera (6,223), Isoptera (2,272), Hemiptera (2,240) and Trichoptera (1,967), which represent 97.3% of all the specimens collected. All the orders, except for Diptera, Isoptera and Trichoptera, showed a relationship with the climate variables (temperature), and all the orders, except for Diptera, presented a grouped distribution, with greater abundance in the transition from the end of the dry season (September) to the start of the rainy one (October/November). A discussion about seasonality on the abundance of the insects is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Origin of samples of Cannabis sativa through insect fragments associated with compacted hemp drug in South America. Insects associated with a seizure of Cannabis sativa L. may indicate the origin of the illicit drug. Nevertheless, no work regarding this subject has been previously published for South America. In the present investigation, seven kilograms of vegetal material (C. sativa) were inspected for insect fragments. Three species were identified and used to test the origin of the seizure of cannabis plant material: Euschistus heros (Fabricius, 1794), Thyanta perditor (Fabricius, 1794) (Heteroptera, Pentatomidae), and Cephalotes pusillus (Klug, 1824) (Hymenoptera, Formicidae). These insect species restricted the geographic origin of the drug to the Neotropical region, and their distribution patterns showed an overlap of the State of Mato Grosso (Brazil), Argentina, and Paraguay. Based on this information, two of the three major C. sativa growing areas in South America were excluded: (1) the Colombian territory and (2) northeastern Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Insect galls of a protected remnant of the Atlantic Forest tableland from Rio de Janeiro State (Brazil): Galling insects in Rio de Janeiro state are known by their great diversity, despite most of the surveys have been done in restinga. This paper investigated the insect galls from a remnant of Atlantic Forest located in São Francisco de Itabapoana municipality, Rio de Janeiro state, Brazil. The galling insect fauna was surveyed from March, 2013 to April, 2014 at the Estação Ecológica Estadual de Guaxindiba. 143 gall morphotypes were found in 31 plant families, 60 genera and 82 species. Fabaceae, Myrtaceae and Sapindaceae were the main host families, being Trichilia, Tontelea and Eugenia the main host genera. Most galls occured on leaves, with globose shape, green and glabrous. Diptera (Cecidomyiidae), Hemiptera, and Lepidoptera were the inducing orders and the associated fauna comprised parasitoids (Hymenoptera), inquilines (Lepidoptera, Coleoptera, and Hemiptera: Coccoidea), successors (Psocoptera, Collembola and Acari), and predators (Pseudoscorpiones). Three plant genera and nine plant species are recorded for the first time as host of galls in Brazil. All the records are new to the municipality, and the distribution of 15 galling species is extended to the North of the state of Rio de Janeiro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia--a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs--indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved "antennal IRs," which likely define the first olfactory receptor family of insects, and species-specific "divergent IRs," which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.