831 resultados para innate and adaptive immunity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5-lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO-/- mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO-/- mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Toxoplasma gondii is an intracellular parasite that causes relevant clinical disease in humans and animals. Several studies have been performed in order to understand the interactions between proteins of the parasite and host cells. SAG2A is a 22 kDa protein that is mainly found in the surface of tachyzoites. In the present work, our aim was to correlate the predicted three-dimensional structure of this protein with the immune system of infected hosts. Methods To accomplish our goals, we performed in silico analysis of the amino acid sequence of SAG2A, correlating the predictions with in vitro stimulation of antigen presenting cells and serological assays. Results Structure modeling predicts that SAG2A protein possesses an unfolded C-terminal end, which varies its conformation within distinct strain types of T. gondii. This structure within the protein shelters a known B-cell immunodominant epitope, which presents low identity with its closest phyllogenetically related protein, an orthologue predicted in Neospora caninum. In agreement with the in silico observations, sera of known T. gondii infected mice and goats recognized recombinant SAG2A, whereas no serological cross-reactivity was observed with samples from N. caninum animals. Additionally, the C-terminal end of the protein was able to down-modulate pro-inflammatory responses of activated macrophages and dendritic cells. Conclusions Altogether, we demonstrate herein that recombinant SAG2A protein from T. gondii is immunologically relevant in the host-parasite interface and may be targeted in therapeutic and diagnostic procedures designed against the infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Group B streptococci (GBS) cause sepsis and meningitis in neonates and serious infections in adults with underlying chronic illnesses. Specific antibodies have been shown to be an important factor in protective immunity for neonates, but the role of serum complement is less well defined. To elucidate the function of the complement system in immunity to this pathogen, we have used the approach of gene targeting in embryonic stem cells to generate mice totally deficient in complement component C3. Comparison of C3-deficient mice with mice deficient in complement component C4 demonstrated that the 50% lethal dose for GBS infection was reduced by approximately 50-fold and 25-fold, respectively, compared to control mice. GBS were effectively killed in vitro by human blood leukocytes in the presence of specific antibody and C4-deficient serum but not C3-deficient serum. The defective opsonization by C3-deficient serum in vitro was corroborated by in vivo studies in which passive immunization of pregnant dams with specific antibodies conferred protection from GBS challenge to normal and C4-deficient pups but not C3-deficient pups. These results indicate that the alternative pathway is sufficient to mediate effective opsonophagocytosis and protective immunity to GBS in the presence of specific antibody. In contrast, the increased susceptibility to infection of non-immune mice deficient in either C3 or C4 implies that the classical pathway plays an essential role in host defense against GBS infection in the absence of specific immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunotherapy of tumours using T cells expanded in vitro has met with mixed clinical success suggesting that a greater understanding of tumour/T-cell interaction is required. We used a HPV16E7 oncoprotein-based mouse tumour model to study this further. In this study, we demonstrate that a HPV16E7 tumour passes through at least three stages of immune susceptibility over time. At the earliest time point, infusion of intravenous immune cells fails to control tumour growth although the same cells given subcutaneously at the tumour site are effective. In a second stage, the tumour becomes resistant to subcutaneous infusion of cells but is now susceptible to both adjuvant activated and HPV16E7-specific immune cells transferred intravenously. In the last phase, the tumour is susceptible to intravenous transfer of HPV16E7-specific cells, but not adjuvant-activated immune cells. The requirement for IFN-gamma and perforin also changes with each stage of tumour development. Our data suggest that effective adoptive T-cell therapy of tumour will need to be matched with the stage of tumour development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of chemokine receptors (CKR) in natural killer- (NK-) cells have already been published, but only a few gave detailed information on its differential expression on blood NK-cell subsets. We report on the expression of the inflammatory and homeostatic CKR on normal blood CD56(+low) CD16(+) and CD56(+high)  CD16(-/+low) NK-cells. Conventional CD56(+low) and CD56(+high) NK-cells present in the normal PB do express CKR for inflammatory cytokines, although with different patterns CD56(+low) NK-cells are mainly CXCR1/CXCR2(+) and CXCR3/CCR5(-/+), whereas mostly CD56(+high) NK-cells are CXCR1/CXCR2(-) and CXCR3/CCR5(+). Both NK-cell subsets have variable CXCR4 expression and are CCR4(-) and CCR6(-). The CKR repertoire of the CD56(+low) NK-cells approaches to that of neutrophils, whereas the CKR repertoire of the CD56(+high) NK-cells mimics that of Th1(+) T cells, suggesting that these cells are prepared to migrate into inflamed tissues at different phases of the immune response. In addition, we describe a subpopulation of NK-cells with intermediate levels of CD56 expression, which we named CD56(+int) NK-cells. These NK-cells are CXCR3/CCR5(+), they have intermediate levels of expression of CD16, CD62L, CD94, and CD122, and they are CD57(-) and CD158a(-). In view of their phenotypic features, we hypothesize that they correspond to a transitional stage, between the well-known CD56(+high) and CD56(+low) NK-cells populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are effectors of cutaneous innate immunity and protect primarily against microbial infections. An array of AMPs can be found in and on the skin. Those include peptides that were first discovered for their antimicrobial properties but also proteins with antimicrobial activity first characterized for their activity as chemokines, enzymes, enzyme inhibitors and neuropeptides. Cathelicidins were among the first families of AMPs discovered in skin. They are now known to exert a dual role in innate immune defense: they have direct antimicrobial activity and will also initiate a host cellular response resulting in cytokine release, inflammation and angiogenesis. Altered cathelicidin expression and function was observed in several common inflammatory skin diseases such as atopic dermatitis, rosacea and psoriasis. Until recently the molecular mechanisms underlying cathelicidin regulation were not known. Lately, vitamin D3 was identified as the major regulator of cathelicidin expression and entered the spotlight as an immune modulator with impact on both, innate and adaptive immunity. Therapies targeting vitamin D3 signalling may provide novel approaches for the treatment of infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions through AMP regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensing of foreign agents by the innate and adaptive immune system triggers complex signal transduction cascades that culminate in expression of gene patterns that facilitate host protection from the invading agent. Post-translational modification of intracellular signaling proteins in these pathways is a key regulatory mechanism with ubiquitination being one of the important processes that controls levels and activities of signaling molecules. E3 ubiquitin ligases are the determining enzymes in dictating the ubiquitination status of individual proteins. Among these hundred E3 ubiquitin ligases are a family of Pellino proteins that are emerging to be important players in immunity and beyond. Herein, we review the roles of the Pellino E3 ubiquitin ligases in innate and adaptive immunity. We discuss their early discovery and characterization and how this has been aided by the highly conserved nature of innate immune signaling across evolution. We describe the molecular roles of Pellino proteins in immune signaling with particular emphasis on their involvement in pathogen recognition receptor (PRR) signaling. The growing appreciation of the importance of Pellino proteins in a wide range of immune-mediated diseases are also evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) present in innate immune cells recognize pathogen molecular patterns and influence immunity to control the host-parasite interaction. The objective of this study was to characterize the involvement of TLR4 in the innate and adaptive immunity to Paracoccidioides brasiliensis, the most important primary fungal pathogen of Latin America. We compared the responses of C3H/HeJ mice, which are naturally defective in TLR4 signaling, with those of C3H/HePas mice, which express functional receptors, after in vitro and in vivo infection with P. brasiliensis. Unexpectedly, we verified that TLR4-defective macrophages infected in vitro with P. brasiliensis presented decreased fungal loads associated with impaired synthesis of nitric oxide, interleukin-12 (IL-12), and macrophage chemotactic protein 1 (MCP-1). After intratracheal infection with 1 million yeasts, TLR4-defective mice developed reduced fungal burdens and decreased levels of pulmonary nitric oxide, proinflammatory cytokines, and antibodies. TLR4-competent mice produced elevated levels of IL-12 and tumor necrosis factor alpha (TNF-alpha), besides cytokines of the Th17 pattern, indicating a proinflammatory role for TLR4 signaling. The more severe infection of TLR4-normal mice resulted in increased influx of activated macrophages and T cells to the lungs and progressive control of fungal burdens but impaired expansion of regulatory T cells (Treg cells). In contrast, TLR4-defective mice were not able to clear their diminished fungal burdens totally, a defect associated with deficient activation of T-cell immunity and enhanced development of Treg cells. These divergent patterns of immunity, however, resulted in equivalent mortality rates, indicating that control of elevated fungal growth mediated by vigorous inflammatory reactions is as deleterious to the hosts as low fungal loads inefficiently controlled by limited inflammatory reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative approach is potentially useful for understanding the role of mammal innate immunity role in stimulating adaptive immunity as well as the relationship between these two types of immune strategies. Considerable progress has been made in the elucidation of the co-ordinated events involved in plant perception of infection and their mobilisation of defence responses. Although lacking immunoglobulin molecules, circulating cells, and phagocytic processes, plants successfully use pre-formed physical and chemical innate defences, as well as inducible adaptive immune strategies. In the present paper, we review some shared and divergent immune aspects present in both animals and plants. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Cellular immunity is the main defense mechanism in paracoccidioidomycosis (PCM), the most important systemic mycosis in Latin America. Th1 immunity and IFN-γ activated macrophages are fundamental to immunoprotection that is antagonized by IL-10, an anti-inflammatory cytokine. Both in human and experimental PCM, several evidences indicate that the suppressive effect of IL-10 causes detrimental effects to infected hosts. Because direct studies have not been performed, this study was aimed to characterize the function of IL-10 in pulmonary PCM. METHODOLOGY/PRINCIPAL FINDINGS: Wild type (WT) and IL-10(-/-) C57BL/6 mice were used to characterize the role of IL-10 in the innate and adaptive immunity against Paracoccidioides brasiliensis (Pb) infection. We verified that Pb-infected peritoneal macrophages from IL-10(-/-) mice presented higher phagocytic and fungicidal activities than WT macrophages, and these activities were associated with elevated production of IFN-γ, TNF-α, nitric oxide (NO) and MCP-1. For in vivo studies, IL-10(-/-) and WT mice were i.t. infected with 1×10(6) Pb yeasts and studied at several post-infection periods. Compared to WT mice, IL-10(-/-) mice showed increased resistance to P. brasiliensis infection as determined by the progressive control of pulmonary fungal loads and total clearance of fungal cells from dissemination organs. This behavior was accompanied by enhanced delayed-type hypersensitivity reactions, precocious humoral immunity and controlled tissue pathology resulting in increased survival times. In addition, IL-10(-/-) mice developed precocious T cell immunity mediated by increased numbers of lung infiltrating effector/memory CD4(+) and CD8(+) T cells. The inflammatory reactions and the production of Th1/Th2/Th17 cytokines were reduced at late phases of infection, paralleling the regressive infection of IL-10(-/-) mice. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates for the first time that IL-10 plays a detrimental effect to pulmonary PCM due to its suppressive effect on the innate and adaptive immunity resulting in progressive infection and precocious mortality of infected hosts.