866 resultados para infrastructureascode devops cloudcomputing continuous delivery agileops ansible docker deploymentpipeline


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte (R) system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte (R) devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte (R) were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 mu g/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 mu g/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated whether the use of continuous positive airway pressure (CPAP) in the delivery room alters the need for mechanical ventilation and surfactant during the first 5 days of life and modifies the incidence of respiratory morbidity and mortality during the hospital stay. The study was a multicenter randomized clinical trial conducted in five public university hospitals in Brazil, from June 2008 to December 2009. Participants were 197 infants with birth weight of 1000-1500 g and without major birth defects. They were treated according to the guidelines of the American Academy of Pediatrics (APP). Infants not intubated or extubated less than 15 min after birth were randomized for two treatments, routine or CPAP, and were followed until hospital discharge. The routine (n=99) and CPAP (n=98) infants studied presented no statistically significant differences regarding birth characteristics, complications during the prenatal period, the need for mechanical ventilation during the first 5 days of life (19.2 vs 23.4%, P=0.50), use of surfactant (18.2 vs 17.3% P=0.92), or respiratory morbidity and mortality until discharge. The CPAP group required a greater number of doses of surfactant (1.5 vs 1.0, P=0.02). When CPAP was applied to the routine group, it was installed within a median time of 30 min. We found that CPAP applied less than 15 min after birth was not able to reduce the need for ventilator support and was associated with a higher number of doses of surfactant when compared to CPAP applied as clinically indicated within a median time of 30 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies of mobile Web trends show a continuous explosion of mobile-friendly content. However, the increasing number and heterogeneity of mobile devices poses several challenges for Web programmers who want to automatically get the delivery context and adapt the content to mobile devices. In this process, the devices detection phase assumes an important role where an inaccurate detection could result in a poor mobile experience for the enduser. In this paper we compare the most promising approaches for mobile device detection. Based on this study, we present an architecture for a system to detect and deliver uniform m-Learning content to students in a Higher School. We focus mainly on the devices capabilities repository manageable and accessible through an API. We detail the structure of the capabilities XML Schema that formalizes the data within the devices capabilities XML repository and the REST Web Service API for selecting the correspondent devices capabilities data according to a specific request. Finally, we validate our approach by presenting the access and usage statistics of the mobile web interface of the proposed system such as hits and new visitors, mobile platforms, average time on site and rejection rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Injectable biomaterials with in situ cross-linking reactions have been suggested to minimize the invasiveness associated with most implantation procedures. However, problems related with the rapid liquid-to-gel transition reaction can arise because it is difficult to predict the reliability of the reaction and its end products, as well as to mitigate cytotoxicity to the surrounding tissues. An alternative minimally invasive approach to deliver solid implants in vivo is based on injectable microparticles, which can be processed in vitro with high fidelity and reliability, while showing low cytotoxicity. Their delivery to the defect can be performed by injection through a small diameter syringe needle. We present a new methodology for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photo-reactive PEG-fibrinogen (PF) polymer was transported through a transparent injector exposed to light-irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data provided the cross-linking kinetics of each PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture prior to atomization. The partially polymerized drops fell into a gelation bath for further polymerization. The system was capable of producing cell-laden microparticles with high cellular viability, with an average diameter of between 88.1 µm to 347.1 µm and a dispersity of between 1.1 and 2.4, depending on the parameters chosen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: : To determine the influence of nebulizer types and nebulization modes on bronchodilator delivery in a mechanically ventilated pediatric lung model. DESIGN: : In vitro, laboratory study. SETTING: : Research laboratory of a university hospital. INTERVENTIONS: : Using albuterol as a marker, three nebulizer types (jet nebulizer, ultrasonic nebulizer, and vibrating-mesh nebulizer) were tested in three nebulization modes in a nonhumidified bench model mimicking the ventilatory pattern of a 10-kg infant. The amounts of albuterol deposited on the inspiratory filters (inhaled drug) at the end of the endotracheal tube, on the expiratory filters, and remaining in the nebulizers or in the ventilator circuit were determined. Particle size distribution of the nebulizers was also measured. MEASUREMENTS AND MAIN RESULTS: : The inhaled drug was 2.8% ± 0.5% for the jet nebulizer, 10.5% ± 2.3% for the ultrasonic nebulizer, and 5.4% ± 2.7% for the vibrating-mesh nebulizer in intermittent nebulization during the inspiratory phase (p < 0.01). The most efficient nebulizer was the vibrating-mesh nebulizer in continuous nebulization (13.3% ± 4.6%, p < 0.01). Depending on the nebulizers, a variable but important part of albuterol was observed as remaining in the nebulizers (jet and ultrasonic nebulizers), or being expired or lost in the ventilator circuit (all nebulizers). Only small particles (range 2.39-2.70 µm) reached the end of the endotracheal tube. CONCLUSIONS: : Important differences between nebulizer types and nebulization modes were seen for albuterol deposition at the end of the endotracheal tube in an in vitro pediatric ventilator-lung model. New aerosol devices, such as ultrasonic and vibrating-mesh nebulizers, were more efficient than the jet nebulizer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether, during hemorrhagic shock, the effect of epinephrine on energy metabolism could be deleterious, by enhancing the oxygen requirement at a given level of oxygen delivery (DO2). DESIGN: Prospective, randomized, control trial. SETTING: Experimental laboratory. SUBJECTS: Two groups of seven mongrel dogs were studied. The epinephrine group received a continuous infusion of epinephrine (1 microgram/min/kg) while the control group received saline. INTERVENTION: Dogs were anesthetized with pentobarbital, and shock was produced by stepwise hemorrhage. MEASUREMENTS AND MAIN RESULTS: Oxygen consumption (VO2) was continuously measured by the gas exchange technique, while DO2 was independently calculated from cardiac output (measured by thermodilution) and blood oxygen content. A dual-lines regression fit was applied to the DO2 vs. VO2 plot. The intersection of the two regression lines defined the critical value of DO2. Values above critical DO2 belonged to phase 1, while phase 2 occurred below critical DO2. In the control group, VO2 was independent of DO2 during phase 1; VO2 was dependent on DO2 during phase 2. In the epinephrine group, the expected increase in VO2 (+19%) and DO2 (+50%) occurred under normovolemic conditions. During hemorrhage, VO2 immediately decreased, and the slope of phase 1 was significantly (p < .01) different from zero, and was significantly (p < .05) steeper than in the control group (0.025 +/- 0.005 vs. 0.005 +/- 0.010). However, the critical DO2 (8.7 +/- 1.7 vs. 9.7 +/- 2.4 mL/min/kg), the critical VO2 (5.6 +/- 0.5 vs. 5.5 +/- 0.9 mL/min/kg), and the slope of phase 2 (0.487 +/- 0.080 vs. 0.441 +/- 0.130) were not different from control values. CONCLUSIONS: The administration of pharmacologic doses of epinephrine significantly increased VO2 under normovolemic conditions due to the epinephrine-induced thermogenic effect. This effect progressively decreased during hemorrhage. The critical DO2 and the relationship between DO2 and VO2 in the supply-dependent phase of shock were unaffected by epinephrine infusion. These results suggest that during hemorrhagic shock, epinephrine administration did not exert a detrimental effect on the relationship between DO2 and VO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parameters of intrarectal pressure (surface area under pressure curve and peak pressure) recorded with a microsystem device during the second phase of labor showed no significant correlations with baby's weight or mode of delivery. AIM OF THE STUDY: Was to assess the biomechanical pressures delivered against pelvic floor structures during the second phase of labor in nulliparae women, and to correlate them with obstetrics parameters, i.e. baby'sweight and mode of delivery. MATERIAL: Using a microsystem device placed into the rectum at the beginning of the second phase of labor, two parameters were assessed during the bearing efforts in 59 nulliparae women: the surface area under the pressure curve and the peak pressure. RESULTS: During 11.5±9 bearing efforts of 99.1±16s duration, the mean value of surface area under the pressure curve was 32677±26058cm/s and the mean value of the peak pressure was 60.7±24cmH(2)O, exceeding 100cmH(2)O in 10% of women. These two parameters were not correlated with baby's weight (R: 0.19, P: 0.15 and R: 0.05, P: 0.71). In the same way, these two parameters were not correlated with the mode of delivery (spontaneous or forceps/vacuum-assisted). Furthermore, the individual values of these two parameters showed great variation from one woman to another. CONCLUSION: This study has showed that parameters of biomechanical pressures recorded into the rectum during second phase of labor had no significant correlations with obstetricals parameters, explaining why these latter have poor predicitive value of further pelvic floor problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous positive airway pressure, aimed at preventing pulmonary atelectasis, has been used for decades to reduce lung injury in critically ill patients. In neonatal practice, it is increasingly used worldwide as a primary form of respiratory support due to its low cost and because it reduces the need for endotracheal intubation and conventional mechanical ventilation. We studied the anesthetized in vivo rat and determined the optimal circuit design for delivery of continuous positive airway pressure. We investigated the effects of continuous positive airway pressure following lipopolysaccharide administration in the anesthetized rat. Whereas neither continuous positive airway pressure nor lipopolysaccharide alone caused lung injury, continuous positive airway pressure applied following intravenous lipopolysaccharide resulted in increased microvascular permeability, elevated cytokine protein and mRNA production, and impaired static compliance. A dose-response relationship was demonstrated whereby higher levels of continuous positive airway pressure (up to 6 cmH(2)O) caused greater lung injury. Lung injury was attenuated by pretreatment with dexamethasone. These data demonstrate that despite optimal circuit design, continuous positive airway pressure causes significant lung injury (proportional to the airway pressure) in the setting of circulating lipopolysaccharide. Although we would currently avoid direct extrapolation of these findings to clinical practice, we believe that in the context of increasing clinical use, these data are grounds for concern and warrant further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to determine the feasibility of the use of continuous positive airway pressure installed prophylactically in the delivery room (DR-CPAP), for infants with a birth weight between 500 and 1000 g in settings with limited resources. During 23 months, infants with a birth weight between 500 and 1000 g consecutively received DR-CPAP. A total of 33 infants with low birth weight were enrolled, 16 (48.5%) were females. Only 14 (42.4%) received antenatal corticosteroids and only 2 of those 14 (14.3%) infants weighing 500-750 g were not intubated in the delivery room, and apnea was given as the reason for intubation of these patients. Of the 19 infants in the 751-1000 g weight range, 9 (47.4%) were intubated in the delivery room, 6 due to apnea and 3 due to respiratory discomfort. For DR-CPAP to be successful, it is probably necessary for preterm babies to be more prepared at birth to withstand the respiratory effort without the need for intubation. Antenatal corticosteroids and better prenatal monitoring are fundamental for success of DR-CPAP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Recombinant adenoviruses are currently under intense investigation as potential gene delivery and gene expression vectors with applications in human and veterinary medicine. As part of our efforts to develop a bovine adenovirus type 2 (BAV2) based vector system, the nucleotide sequence of BAV2 was determined. Sixty-six open reading frames (ORFs) were found with the potential to encode polypeptides that were at least 50 amino acid (aa) residue long. Thirty-one of the BAV2 polypeptide sequences were found to share homology to already identified adenovirus proteins. The arrangement of the genes revealed that the BAV2 genomic organization closely resembles that of well-characterized human adenoviruses. In the course of this study, continuous propagation of BAV2 over many generations in cell culture resulted in the isolation of a BAV2 spontaneous mutant in which the E3 region was deleted. Restriction enzyme, sequencing and PCR analyses produced concordant results that precisely located the deletion and revealed that its size was exactly 1299 bp. The E3-deleted virus was plaque-purified and further propagated in cell culture. It appeared that the replication of such a virus lacking a portion of the E3 region was not affected, at least in cell culture. Attempts to rescue a recombinant BAV2 virus with the bacterial kanamycin resistance gene in the E3 region yielded a candidate as verified with extensive Southern blotting and PCR analyses. Attempts to purify the recombinant virus were not successful, suggesting that such recombinant BAV2 was helper-dependent. Ten clones containing full-length BAV2 genomes in a pWE15 cosmid vector were constructed. The infectivity of these constructs was tested by using different transfection methods. The BAV2 genomic clones did appear to be infectious only after extended incubation period. This may be due to limitations of various transfection methods tested, or biological differences between virus- and E. co//-derived BAV2 DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In some parts of the world, peritoneal dialysis is widely used for renal replacement therapy (RRT) in acute kidney injury (AKI), despite concerns about its inadequacy. It has been replaced in recent years by hemodialysis and, most recently, by continuous venovenous therapies. We performed a prospective study to determine the effect of continuous peritoneal dialysis (CPD), as compared with daily hemodialysis (dHD), on survival among patients with AKI.Methods: A total of 120 patients with acute tubular necrosis (ATN) were assigned to receive CPD or dHD in a tertiary-care university hospital. The primary endpoint was hospital survival rate; renal function recovery and metabolic, acid-base, and fluid controls were secondary endpoints.Results: of the 120 patients, 60 were treated with CPD (G1) and 60 with dHD (G2). The two groups were similar at the start of RRT with respect to age (64.2 +/- 19.8 years vs 62.5 +/- 21.2 years), sex (men: 72% vs 66%), sepsis (42% vs 47%), shock (61% vs 63%), severity of AKI [Acute Tubular Necrosis Individual Severity Score (ATNISS): 0.68 +/- 0.2 vs 0.66 +/- 0.22; Acute Physiology and Chronic Health Evaluation (APACHE) II: 26.9 +/- 8.9 vs 24.1 +/- 8.2], pre-dialysis blood urea nitrogen [BUN (116.4 +/- 33.6 mg/dL vs 112.6 +/- 36.8 mg/dL)], and creatinine (5.85 +/- 1.9 mg/dL vs 5.95 +/- 1.4 mg/dL). In G1, weekly delivered Kt/V was 3.59 +/- 0.61, and in G2, it was 4.76 +/- 0.65 (p < 0.01). The two groups were similar in metabolic and acid-base control (after 4 sessions, BUN < 55 mg/dL: 46 +/- 18.7 mg/dL vs 52 +/- 18.2 mg/dL; pH: 7.41 vs 7.38; bicarbonate: 22.8 +/- 8.9 mEq/L vs 22.2 +/- 7.1 mEq/L). Duration of therapy was longer in G2 (5.5 days vs 7.5 days; p = 0.02). Despite the delivery of different dialysis methods and doses, the survival rate did not differ between the groups (58% in G1 vs 52% in G2), and recovery of renal function was similar (28% vs 26%).Conclusion: High doses of CPD provided appropriate metabolic and pH control, with a rate of survival and recovery of renal function similar to that seen with dHD. Therefore, CPD can be considered an alternative to other forms of RRT in AKI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)