915 resultados para in situ synchrotron XRD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaN epilayers on sapphire substrate grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal-type low-pressure two-channel reactor were investigated. Samples were characterized by X-ray diffraction (XRD), Raman scattering, atomic force microscopy (AFM) and photoluminescence (PL) measurements. The influence of the temperature changes between low temperature (LT) deposited GaN buffer and high temperature (WT) grown GaN epilayer on crystal quality of epilayer was extensively studied. The effect of in situ thermal annealing during the growth on improving the GaN layer crystal quality was demonstrated and the possible mechanism involved in such a growth process was discussed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid material based on Pt nanoparticles (Pt NPs) and multi-walled carbon nanotubes (MWNTs) was fabricated with the assistance of PEI and formic acid. The cationic polyelectrolyte PEI not only favored the homogenous dispersion of carbon nanotubes (CNTs) in water, but also provided sites for the adsorption of anionic ions PtCl42- on the MWNTs' sidewalls. Deposition of Pt NPs on the MWNTs' sidewalls was realized by in situ chemical reduction of anionic ions PtCl42- with formic acid. The hybrid material was characterized with TEM, XRD and XPS. Its excellent electrocatalytic activity towards both oxygen reduction in acid media and dopamine redox was also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deformation mechanism or styrene/n-butyl acrylate copolymer latex films with fiber symmetric crystalline structure subjected to uniaxial stretching was studied using synchrotron small-angle X-ray scattering technique. The fibers were drawn at angles or 0, 35, and 55 degrees with respect to the Fiber axis. In all cases, the microscopic deformation within the crystallites was Found to deviate from affine deformation behavior with respect to the macroscopic deformation ratio. Moreover, the extent of this deviation is different in the three cases. This peculiar behavior can be attributed to the relative orientation of the (111) plane of the crystals, the plane of densest packing, with respect to the stretching direction in each case. When the stretching direction coincides with the crystallographic (111) plane, which is the case for stretching directions of 0 and 55 degrees with respect to the fiber axis, the microscopic deformation deviates less from affine behavior than when the stretching direction is arbitrarily oriented with respect to the crystallographic (111) plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CeF3 and CeF3:Tb3+ nanoparticles were prepared by reverse microemulsion with a functional monomer, methyl methacrylate (MMA), as the oil phase, and CeF3:Tb3+/poly (methyl methacrylate) (PMMA) nanocomposites were obtained via polymerization of the MMA monomer. The nanoparticles and nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), low- and high-resolution transmission electron microscope (TEM), selected-area electron diffraction (SAED), thermogravimetric analysis (TGA), UV/vis transmission spectra, photoluminescence excitation, and emission spectra and luminescence decays. The well-crystallized CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 15 nm. They show the characteristic emission of Ce3+ 5d-4f (313 nm, D-2-F-2(5/2); 323 nm, D-2-F-2(7/2)) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 541 nm as the strongest one) transitions, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LaPO4:Ce3+, Tb3+ nanoparticles were prepared by the reverse microemulsion with functional monomer, methyl methacrylate (MMA) as oil phase, and LaPO4:Ce3+, Tb3+/poly(methyl methacrylate) (PMMA) nanocomposite was obtained via polymerization of MMA monomer. The nanoparticles and nanocomposite have been well characterized by XRD, SEM, TEM, UV/vis spectrum, photoluminescence excitation and emission spectra and luminescence decays. The obtained solid nanocomposite LaPO4:Ce3+, Tb3+/PMMA is highly transparent and exhibits strong green photoluminescence upon UV excitation, due to the integration of luminescent LaPO4:Ce3+, Tb3+ nanoparticles. The luminescent lifetime of Tb3+ is determined to be 1.25 ms in the nanocomposite. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica-gel nanowire/Na+-montmorillonite (Na+-MMT) nanocomposites were prepared by the in situ sol-gel process of tetraethyl orthosilicate (TEOS) in the presence of Na+-MMT and ammonia as catalyst. Microstructure characterization of the nanocomposites was done by SEM, , EDX, XRD and FTIR. It was found that a lot of silica-gel nanowires grew along the edges of Na+-MMT. The combination between the nanowires and Na+-MMT was accomplished via polycondensation of the hydrolyzed TEOS and the edge-OH groups of Na+-MMT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective and facile in Situ reduction approach for the fabrication of carbon nanotube-supported Au nanoparticle (CNT/Au NP) composite nanomaterials is demonstrated in this article. Linear polyethyleneimine (PEI) is ingeniously used as both a functionalizing agent for the multiwalled carbon nanotubes (MWNTs) and a reducing agent for the formation of An NPs. This method involves a simple mixing process followed by a mild heating process. This approach does not need the exhaustive surface oxidation process of CNTs. The coverage of Au NPs on CNTs is tunable by varying the experimental parameters, such as the initial molar ratio of PEI to HAuCl4, the relative concentration of PEI and HAUCl(4) to MWNTs, and the temperature and duration of the heat treatment. More importantly, even the heterogeneous CNT/Au composite nanowires are obtainable through this method. TEM, XPS, and XRD are all used to characterize the CNT/Au composite materials. In addition, the optical and electrocatalytic properties are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in-situ modified sol-gel method for the preparation of a Ni-based monolith-supported catalyst is reported. With the presence of a proper amount of plasticizer and binder, and at an optimized pH value, the stable boehmite sol was modified with metal ions (Ni, Li, La) successfully without distinct growth of the particle size. Monolith-supported Ni-based/gamma-Al2O3 catalysts were obtained using the modified sol as the coating medium with several cycles of dip-coating and calcination. Combined BET, SEM-EDS, XRD and H-2-TPR investigations demonstrated that the derived monolith catalysts had a high specific surface area, a relatively homogeneous surface composition, and a high extent of interaction between the active component and the support. These catalysts showed relatively stable catalytic activities for partial oxidation of methane (POM) to syngas under atmospheric pressure. The monolith catalysts prepared by this sol-gel method also demonstrated an improved resistance to sintering and loss of the active component during the reaction process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous spinel membranes as ultrafiltration membranes were prepared through a novel sol-gel technique. By in situ modification of the sol particle surface during the sol-gel process, control of the material structure on a nanometer scale from the earliest stages of processing was realized. Nano-particles with a chocolate-nut-like morphology, i.e. spinel MgAl2O4 as a shell and gamma -Al2O3 as a core, were first revealed by HRTEM results. The formation of the spinel phase was confirmed by X-ray diffraction (XRD). N-2 adsorption-desorption results showed that the mesoporous membranes had a narrow pore size distribution. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposites of high-density polyethylene (HDPE) and carbon nanotubes (CNT) of different geometries (single wall, double wall, and multiwall; SWNT, DWNT, and MWNT) were prepared by in situ polymerization of ethylene on CNT whose surface had been previously treated with a metallocene catalytic system. In this work, we have studied the effects of applying the successive self-nucleation and annealing thermal fractionation technique (SSA) to the nanocomposites and have also determined the influence of composition and type of CNT on the isothermal crystallization behavior of the HDPE. SSA results indicate that all types of CNT induce the formation of a population of thicker lamellar crystals that melt at higher temperatures as compared to the crystals formed in neat HDPE prepared under the same catalytic and polymerization conditions and subjected to the same SSA treatment. Furthermore, the peculiar morphology induced by the CNT on the HDPE matrix allows the resolution of thermal fractionation to be much better. The isothermal crystallization results indicated that the strong nucleation effect caused by CNT reduced the supercooling needed for crystallization. The interaction between the HDPE chains and the surface of the CNT is probably very strong as judged by the results obtained, even though it is only physical in nature. When the total crystallinity achieved during isothermal crystallization is considered as a function of CNT content, it was found that a competition between nucleation and topological confinement could account for the results. At low CNT content the crystallinity increases (because of the nucleating effect of CNT on HDPE), however, at higher CNT content there is a dramatic reduction in crystallinity reflecting the increased confinement experienced by the HDPE chains at the interfaces which are extremely large in these nanocomposites. Another consequence of these strong interactions is the remarkable decrease in Avrami index as CNT content increases. When the Avrami index reduces to I or lower, nucleation dominates the overall kinetics as a consequence of confinement effects. Wide-angle X-ray experiments were performed at a high-energy synchrotron source and demonstrated that no change in the orthorhombic unit cell of HDPE occurred during crystallization with or without CNT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of the global orientation parameter for a series of aqueous hydroxypropylcellulose solutions both during and following the cessation of a steady-state shear flow is reported. Time-resolved orientation measurements were made in situ through a novel X-ray rheometer coupled with a two-dimensional electronic X-ray camera, and using an intense X-ray source at the LURE synchrotron. After the cessation of flow, the global orientation decreases from the steady-state orientation level to zero following shear flow at low shear rate or to a small but finite value after flow at a high shear rate. The decrease of orientation with time shows different behaviour, dependent upon the previously applied shear rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional X-ray scattering system developed around a CCD-based area detector is presented, both in terms of hardware employed and software designed and developed. An essential feature is the integration of hardware and software, detection and sample environment control which enables time-resolving in-situ wide-angle X-ray scattering measurements of global structural and orientational parameters of polymeric systems subjected to a variety of controlled external fields. The development and operation of a number of rheometers purpose-built for the application of such fields are described. Examples of the use of this system in monitoring degrees of shear-induced orientation in liquid-crystalline systems and crystallization of linear polymers subsequent to shear flow are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enantioselective heterogeneous hydrogenation of Cdouble bond; length as m-dashO bonds is of great potential importance in the synthesis of chirally pure products for the pharmaceutical and fine chemical industries. One of the most widely studied examples of such a reaction is the hydrogenation of β-ketoesters and β-diketoesters over Ni-based catalysts in the presence of a chiral modifier. Here we use scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) to investigate the adsorption of the chiral modifier, namely (R,R)-tartaric acid, onto individual nickel nanoparticles. The C K-edge spectra strongly suggest that tartaric acid deposited onto the nanoparticle surfaces from aqueous solutions undergoes a keto-enol tautomerisation. Furthermore, we are able to interrogate the Ni L2,3-edge resonances of individual metal nanoparticles which, combined with X-ray diffraction (XRD) patterns showed them to consist of a pure nickel phase rather than the more thermodynamically stable bulk nickel oxide. Importantly, there appears to be no “particle size effect” on the adsorption mode of the tartaric acid in the particle size range ~ 90–~ 300 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose nanofibrils (CNF) were extracted by acid hydrolysis from cotton microfibrils and nanocomposites with polyaniline doped with dodecyl benzenesulphonic acid (PANI-DBSA) were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA to aniline and aniline to oxidant were varied in situ and the nanocomposites characterized by four probe DC electrical conductivity, ultraviolet-visible-near infrared (UV-Vis - NIR) and Fourier-transform infrared (FTIR) spectroscopies and X-ray diffraction (XRD). FTIR and UV-Vis/NIR characterization confirmed the polymerization of PANI onto CNF surfaces. Electrical conductivity of about 10 -1 S/cm was achieved for the composites; conductivity was mostly independent of DBSA/aniline (between 2 and 4) and aniline/oxidant (between 1 and 5) molar ratios. X-ray patterns of the samples showed crystalline peaks characteristic of cellulose I for CNF samples, and a mixture of both characteristic peaks of PANI and CNF for the nanocomposites. Field emission scanning electron microscopy (FESEM) characterization corroborated the abovementioned results showing that PANI coated the surface of the nanofibrils. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.