1000 resultados para images
Resumo:
This work discusses the determination of the breathing patterns in time sequence of images obtained from magnetic resonance (MR) and their use in the temporal registration of coronal and sagittal images. The registration is made without the use of any triggering information and any special gas to enhance the contrast. The temporal sequences of images are acquired in free breathing. The real movement of the lung has never been seen directly, as it is totally dependent on its surrounding muscles and collapses without them. The visualization of the lung in motion is an actual topic of research in medicine. The lung movement is not periodic and it is susceptible to variations in the degree of respiration. Compared to computerized tomography (CT), MR imaging involves longer acquisition times and it is preferable because it does not involve radiation. As coronal and sagittal sequences of images are orthogonal to each other, their intersection corresponds to a segment in the three-dimensional space. The registration is based on the analysis of this intersection segment. A time sequence of this intersection segment can be stacked, defining a two-dimension spatio-temporal (2DST) image. The algorithm proposed in this work can detect asynchronous movements of the internal lung structures and lung surrounding organs. It is assumed that the diaphragmatic movement is the principal movement and all the lung structures move almost synchronously. The synchronization is performed through a pattern named respiratory function. This pattern is obtained by processing a 2DST image. An interval Hough transform algorithm searches for synchronized movements with the respiratory function. A greedy active contour algorithm adjusts small discrepancies originated by asynchronous movements in the respiratory patterns. The output is a set of respiratory patterns. Finally, the composition of coronal and sagittal image pairs that are in the same breathing phase is realized by comparing of respiratory patterns originated from diaphragmatic and upper boundary surfaces. When available, the respiratory patterns associated to lung internal structures are also used. The results of the proposed method are compared with the pixel-by-pixel comparison method. The proposed method increases the number of registered pairs representing composed images and allows an easy check of the breathing phase. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Template matching is a technique widely used for finding patterns in digital images. A good template matching should be able to detect template instances that have undergone geometric transformations. In this paper, we proposed a grayscale template matching algorithm named Ciratefi, invariant to rotation, scale, translation, brightness and contrast and its extension to color images. We introduce CSSIM (color structural similarity) for comparing the similarity of two color image patches and use it in our algorithm. We also describe a scheme to determine automatically the appropriate parameters of our algorithm and use pyramidal structure to improve the scale invariance. We conducted several experiments to compare grayscale and color Ciratefis with SIFT, C-color-SIFT and EasyMatch algorithms in many different situations. The results attest that grayscale and color Ciratefis are more accurate than the compared algorithms and that color-Ciratefi outperforms grayscale Ciratefi most of the time. However, Ciratefi is slower than the other algorithms.
Resumo:
Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to their corresponding gold standard. Moreover, the results were also corroborated statistically by having as high as 92.72% and 91.9% of true positive area fraction for the lumen and media adventitia border, respectively. In addition, this approach can be adapted easily and applied to other related modalities, such as intravascular optical coherence tomography and intravascular magnetic resonance imaging. (E-mail: matheuscardosomg@hotmail.com) (C) 2011 World Federation for Ultrasound in Medicine & Biology.
Resumo:
The increasing adoption of information systems in healthcare has led to a scenario where patient information security is more and more being regarded as a critical issue. Allowing patient information to be in jeopardy may lead to irreparable damage, physically, morally, and socially to the patient, potentially shaking the credibility of the healthcare institution. Medical images play a crucial role in such context, given their importance in diagnosis, treatment, and research. Therefore, it is vital to take measures in order to prevent tampering and determine their provenance. This demands adoption of security mechanisms to assure information integrity and authenticity. There are a number of works done in this field, based on two major approaches: use of metadata and use of watermarking. However, there still are limitations for both approaches that must be properly addressed. This paper presents a new method using cryptographic means to improve trustworthiness of medical images, providing a stronger link between the image and the information on its integrity and authenticity, without compromising image quality to the end user. Use of Digital Imaging and Communications in Medicine structures is also an advantage for ease of development and deployment.
Resumo:
We use networks composed of three phase-locked loops (PLLs), where one of them is the master, for recognizing noisy images. The values of the coupling weights among the PLLs control the noise level which does not affect the successful identification of the input image. Analytical results and numerical tests are presented concerning the scheme performance. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Using Landsat imagery, forest canopy density (FCD) estimated with the FCD Mapper®, was correlated with predominant height (PDH, measured as the average height of the tallest 50 trees per hectare) for 20 field plots measured in native forest at Noosa Heads, south-east Queensland, Australia. A corresponding image was used to calculate FCD in Leyte Island, the Philippines and was validated on the ground for accuracy. The FCD Mapper was produced for the International Tropical Timber Organisation and estimates FCD as an index of canopy density using reflectance characteristics of Landsat Enhanced Thematic (ETM) Mapper images. The FCD Mapper is a ‘semi-expert’ computer program which uses interactive screens to allow the operator to make decisions concerning the classification of land into bare soil, grass and forest. At Noosa, a positive strong nonlinear relationship (r2 = 0.86) was found between FCD and PDH for 15 field plots with variable PDH but complete canopy closure. An additional five field plots were measured in forest with a broken canopy and the software assessed these plots as having a much lower FCD than forest with canopy closure. FCD estimates for forest and agricultural land in the island of Leyte and subsequent field validation showed that at appropriate settings, the FCD Mapper differentiated between tropical rainforest and banana or coconut plantation. These findings suggest that in forests with a closed canopy this remote sensing technique has promise for forest inventory and productivity assessment. The findings also suggest that the software has promise for discriminating between native forest with a complete canopy and forest which has a broken canopy, such as coconut or banana plantation.
Resumo:
The reflectance signatures of plantation pine canopy and understorey components were measured using a spectro-radiometer. The aim was to establish whether differences observed in the reflectance signature of stressed and unstressed pine needles were consistent with observed differences in the reflectance of multispectral Landsat Thematic Mapper (TM) images of healthy and stressed forest. Because overall scene reflectance includes the contribution of each scene component, needle reflectance may not be representative of canopy reflectance. In this investigation, a limited dataset of reflectance signatures from stressed and unstressed needles confirmed the negative relationship between pine needle health and reflectance which was observed in visible red wavelengths. However, the reflectance contribution from bushes, pine needle litter and bare soil tended to reinforce this relationship suggesting that in this instance, overall scene reflectance is comprised of the proportional reflectance of each scene component. In near infrared wavelengths, differences between healthy and stressed needle reflectance suggested a strong positive relationship between reflectance and tree health. For Landsat TM images, previous research had only observed a weak positive relationship between stand health and near infrared reflectance in these pine canopies. This suggests that for multispectral Landsat TM images, reflectance of near infrared light from pine canopies may be affected by other factors which may include the scattering of light within canopies. These results are seen as promising for the use of hyperspectral images to detect stand health, provided that pixel reflectance is not influenced by other scene components.
Resumo:
Bulk density of undisturbed soil samples can be measured using computed tomography (CT) techniques with a spatial resolution of about 1 mm. However, this technique may not be readily accessible. On the other hand, x-ray radiographs have only been considered as qualitative images to describe morphological features. A calibration procedure was set up to generate two-dimensional, high-resolution bulk density images from x-ray radiographs made with a conventional x-ray diffraction apparatus. Test bricks were made to assess the accuracy of the method. Slices of impregnated soil samples were made using hardsetting seedbeds that had been gamma scanned at 5-mm depth increments in a previous study. The calibration procedure involved three stages: (i) calibration of the image grey levels in terms of glass thickness using a staircase made from glass cover slips, (ii) measurement of ratio between the soil and resin mass attenuation coefficients and the glass mass attenuation coefficient, using compacted bricks of known thickness and bulk density, and (iii) image correction accounting for the heterogeneity of the irradiation field. The procedure was simple, rapid, and the equipment was easily accessible. The accuracy of the bulk density determination was good (mean relative error 0.015), The bulk density images showed a good spatial resolution, so that many structural details could be observed. The depth functions were consistent with both the global shrinkage and the gamma probe data previously obtained. The suggested method would be easily applied to the new fuzzy set approach of soil structure, which requires generation of bulk density images. Also, it would be an invaluable tool for studies requiring high-resolution bulk density measurement, such as studies on soil surface crusts.
Resumo:
An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required, The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.
Resumo:
Modulation of subjective time was examined using static images eliciting perceptions of different intensities of body movement. Undergraduate students were exposed to photographs of dancer sculptures in different dance positions for 36 sec. and asked to estimate the exposure duration. Lower movement intensities were related to shorter estimated durations. Mean durations for images of unmoving dancers were underestimated and for dancers taking a ballet step were overestimated. Temporal estimations were also related to the order of presentation of the stimuli, which suggested that subjective time estimations were influenced by the experimental context. Subjective time is related not only to the visual perception of moving images, but also of elicited perceptions of movement in static images, suggesting an embodiment effect on subjective time estimation.
Resumo:
A long-standing challenge of content-based image retrieval (CBIR) systems is the definition of a suitable distance function to measure the similarity between images in an application context which complies with the human perception of similarity. In this paper, we present a new family of distance functions, called attribute concurrence influence distances (AID), which serve to retrieve images by similarity. These distances address an important aspect of the psychophysical notion of similarity in comparisons of images: the effect of concurrent variations in the values of different image attributes. The AID functions allow for comparisons of feature vectors by choosing one of two parameterized expressions: one targeting weak attribute concurrence influence and the other for strong concurrence influence. This paper presents the mathematical definition and implementation of the AID family for a two-dimensional feature space and its extension to any dimension. The composition of the AID family with L (p) distance family is considered to propose a procedure to determine the best distance for a specific application. Experimental results involving several sets of medical images demonstrate that, taking as reference the perception of the specialist in the field (radiologist), the AID functions perform better than the general distance functions commonly used in CBIR.
Resumo:
OBJECTIVE: To describe the microsurgical anatomy, branches, and anatomic relationships of the posterior cerebral artery (PCA) represented in three-dimensional images. METHODS: Seventy hemispheres of 35 brain specimens were studied. They were previously injected with red silicone and fixed in 10% formalin for at least 40 days. Four of the studied specimens were frozen at -10 degrees to -15 degrees C for 14 days, and additional dissection was done with the Klingler`s fiber dissection technique at x6 to x40 magnification. Each segment of the artery was measured and photographed to obtain three-dimensional stereoscopic images. RESULTS: The PCA origin was in the interpeduncular cistern at the pontomesencephalic junction level in 23 specimens (65.7%). The PCA was divided into four segments: P1 extends from the PCA origin to its junction with the posterior communicating artery with an average length of 7.7 mm; P2 was divided into an anterior and posterior segment. The P2A segment begins at the posterior communicating artery and ends at the most lateral aspect of the cerebral peduncle, with an average length of 23.6 mm, and the P2P segment extends from the most lateral aspect of the cerebral peduncle to the posterior edge of the lateral surface of the midbrain, with an average length of 16.4 mm; P3 extends from the posterior edge of the lateral surface of the midbrain and ends at the origin of the parieto-occipital sulcus along the calcarine fissure, with an average length of 19.8 mm; and the P4 segment corresponds to the parts of the PCA that run along or inside both the parieto-occipital sulcus and the distal part of the calcarine fissure. CONCLUSIONS: To standardize the neurosurgical practice and knowledge, surgical anatomic classifications should be used uniformly and further modified according to the neurosurgical experience gathered. The PCA classification proposed intends to correlate its anatomic segments with their required microneurosurgical approaches.
Resumo:
The use of X-ray imaging to assess variability in ceramic fabrication is common in archaeological studies aimed at examining ancient pottery technologies. In this paper, a method based on the measurement of individual pores orientation is presented. This method is successfully applied to ceramic specimens of known origin whose structure signified different deformation histories.
Resumo:
Computer modelling has shown that electrical characteristics of individual pixels may be extracted from within multiple-frequency electrical impedance tomography (MFEIT) images formed using a reference data set obtained from a purely resistive, homogeneous medium. In some applications it is desirable to extract the electrical characteristics of individual pixels from images where a purely resistive, homogeneous reference data set is not available. One such application of the technique of MFEIT is to allow the acquisition of in vivo images using reference data sets obtained from a non-homogeneous medium with a reactive component. However, the reactive component of the reference data set introduces difficulties with the extraction of the true electrical characteristics from the image pixels. This study was a preliminary investigation of a technique to extract electrical parameters from multifrequency images when the reference data set has a reactive component. Unlike the situation in which a homogenous, resistive data set is available, it is not possible to obtain the impedance and phase information directly from the image pixel values of the MFEIT images data set, as the phase of the reactive reference is not known. The method reported here to extract the electrical characteristics (the Cole-Cole plot) initially assumes that this phase angle is zero. With this assumption, an impedance spectrum can be directly extracted from the image set. To obtain the true Cole-Cole plot a correction must be applied to account for the inherent rotation of the extracted impedance spectrum about the origin, which is a result of the assumption. This work shows that the angle of rotation associated with the reactive component of the reference data set may be determined using a priori knowledge of the distribution of frequencies of the Cole-Cole plot. Using this angle of rotation, the true Cole-Cole plot can be obtained from the impedance spectrum extracted from the MFEIT image data set. The method was investigated using simulated data, both with and without noise, and also for image data obtained in vitro. The in vitro studies involved 32 logarithmically spaced frequencies from 4 kHz up to 1 MHz and demonstrated that differences between the true characteristics and those of the impedance spectrum were reduced significantly after application of the correction technique. The differences between the extracted parameters and the true values prior to correction were in the range from 16% to 70%. Following application of the correction technique the differences were reduced to less than 5%. The parameters obtained from the Cole-Cole plot may be useful as a characterization of the nature and health of the imaged tissues.