908 resultados para image processing--digital techniques
Resumo:
Actualment, en l'àmbit mèdic, la ressonància magnètica, MRI Magnetic Resonance Imaging, és un dels sistemes més utilitzats per a la realització de diagnòstics i el seguiment de l'evolució de malalties com l'esclerosi múltiple (EM). No obstant, la gran quantitat d'informació que proporciona aquesta modalitat té com a conseqüència una tasca feixuga d'anàlisi i d'interpretació per part dels radiòlegs i neuròlegs. L'objectiu general d'aquest projecte és desenvolupar un sistema per ajudar als metges a segmentar les imatges de MRI del cervell. S'ha implementat amb MATLAB. Durant tot el procés s'han utilitzat dades sintètiques, de la base de dades simulada BrainWeb, i reals, proporcionades pels grup de metges col•laboradors amb el grup VICOROB. El projecte s'emmarca dins d'un projecte de recerca del grup de Visió per Computador i Robòtica de la Universitat de Girona
Resumo:
L’objectiu d’aquest projecte és integrar a la plataforma Starviewer ( plataforma informàtica de processament i visualització d’imatges mèdiques creada fruit de la col•laboració del Laboratori de Gràfics i Imatge (GILab) de la Universitat de Girona i l’Institut de Diagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta de Girona) per donar suport al diagnòstic un entorn de suport a la inserció de pròtesis, que permeti automatitzar al màxim les operacions que actualment es realitzen de forma manual. Hem de tenir en compte que, tot i que, la imatge més usada pel radiòleg es la radiografia (Rx) també treballa amb tomografia computada (TAC). El TAC dona una visió 3D de l’organisme, mentre que la Rx és 2D
Resumo:
L’objectiu d’aquest projecte és ampliar la plataforma Starviewer integrant els mòduls necessaris per donar suport al diagnòstic de l’estenosi de caròtida permetent interpretar de forma més fàcil les imatges Angiografia per Ressonància Magnètica (ARM). La plataforma Starviewer és un entorn informàtic que integra funcionalitats bàsiques i avançades pel processament i la visualització d’imatges mèdiques. Està desenvolupat pel Grup d’Informàtica Gràfica de la Universitat de Girona i l’Institut de Diagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta. Una de les limitacions de la plataforma és el no suportar el tractament de lesions del sistema vascular. Per això ens proposem a corregir-ho i ampliar les seves extensions per a poder diagnosticar l’estenosi de caròtida
Resumo:
L’objectiu d’aquest projecte es dissenyar i implementar un entorn de suport al diagnòstic dels aneurismes. Aquest entorn s’haurà d’integrar en la plataforma Starviewer. La plataforma Starviewer és un entorn de processament i visualització de dades mèdiques desenvolupat conjuntament entre el Laboratori de Gràfics i Imatge de la UdG i l’ Institut de Diagnòstic per la Imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma ofereix les funcionalitats bàsiques per diagnosticar a partir d’imatges. Tot i les funcionalitats de la plataforma, en la versió actual no es suporta el processament avançat d’imatge d’angiografia. En aquest projecte ens proposem ampliar aquesta plataforma integrant els mòduls necessaris que permetin el processament d’angiografies usades en el diagnòstic dels aneurismes
Resumo:
El càncer de pell es considera un dels tipus de càncer més freqüents actualment, entre d'altres factors degut a l'augment en l'exposició a la radiació ultraviolada (UV). Recentment la utilització de la Microscòpia Confocal (MCF) per a l'avaluació i diagnosi del càncer de pell ha rebut un important interès. El principal avantatge és la capacitat de visualitzar en temps real la regió d'interès a nivell cel·lular, similar a la informació obtinguda en una biòpsia, sense el patiment que suposa per al pacient. El principal inconvenient però, és que les imatges obtingudes amb MCF són difícils d'interpretar per als metges en el format actual (conjunt de talls 2D a diferents profunditats de la pell). El microscopi confocal és una de les tècniques més actuals de diagnòstic, i s'ha establert com a una eina per obtenir imatges d'alta resolució i reconstruccions 3-D d'una gran varietat de mostres biològiques. És capaç d'escombrar diferents plans en l'eix Z, obtenint imatges 2D de diferent profunditat juntament amb la informació dels paràmetres de captura (com ara la profunditat, potència del làser, posicionament en x,y,z, etc). Mitjançant eines informàtiques es pot integrar aquesta informació en un model 3D de la regió d'interès. L'objectiu principal d'aquest projecte és el desenvolupament d'una eina per a l'ajuda en la interpretació de les imatges MCF i així poder millorar el diagnosi del càncer de pell
Resumo:
El processament de dades cardíaques és, sinó el que més, un dels més complexes de tractar. El problema principal és que a diferència d’altres parts de l’organisme, el cor del pacient està en moviment continu. Aquest moviment queda representat en les imatges generades pels aparells de captació en forma de soroll. Aquest soroll no només dificulta la detecció de les patologies per part dels cardiòlegs i els especialistes sinó que també en moltes ocasions limita l’aplicació de certes tècniques i mètodes. Així per exemple, l’aplicació de mètodes de visualització 3D (mètodes que permeten generar una representació 3D d’un òrgan) que poden aplicar-se fàcilment en visualització de dades del cervell no són aplicables sobre dades de cor. El Grup d’Informàtica Gràfica de la Universitat de Girona, juntament amb l’Institut de Diagnòstic per la Imatge (IDI) de l'hospital Dr. Josep Trueta, està col·laborant en el desenvolupament de noves eines informàtiques que donin suport al diagnòstic. Una de les prioritats actuals de l'IDI és el tractament de malalties cardíaques. Es disposa d’una plataforma anomenada Starviewer que integra les operacions bàsiques de manipulació i visualització de dades mèdiques. L’objectiu d’aquest projecte és el de desenvolupar i integrar en la plataforma Starviewer els mòduls necessaris per poder tractar, manipular i visualitzar dades cardíaques provinents de ressònancies magnètiques
Resumo:
La visualització científica estudia i defineix algorismes i estructures de dades que permeten fer comprensibles conjunts de dades a través d’imatges. En el cas de les aplicacions mèdiques les dades que cal interpretar provenen de diferents dispositius de captació i es representen en un model de vòxels. La utilitat d’aquest model de vòxels depèn de poder-lo veure des del punt de vista ideal, és a dir el que aporti més informació. D’altra banda, existeix la tècnica dels Miralls Màgics que permet veure el model de vòxels des de diferents punts de vista alhora i mostrant diferents valors de propietat a cada mirall. En aquest projecte implementarem un algorisme que permetrà determinar el punt de vista ideal per visualitzar un model de vòxels així com també els punts de vista ideals per als miralls per tal d’aconseguir el màxim d’informació possible del model de vòxels. Aquest algorisme es basa en la teoria de la informació per saber quina és la millor visualització. L’algorisme també permetrà determinar l’assignació de colors òptima per al model de vòxels
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Road surface macro-texture is an indicator used to determine the skid resistance levels in pavements. Existing methods of quantifying macro-texture include the sand patch test and the laser profilometer. These methods utilise the 3D information of the pavement surface to extract the average texture depth. Recently, interest in image processing techniques as a quantifier of macro-texture has arisen, mainly using the Fast Fourier Transform (FFT). This paper reviews the FFT method, and then proposes two new methods, one using the autocorrelation function and the other using wavelets. The methods are tested on pictures obtained from a pavement surface extending more than 2km's. About 200 images were acquired from the surface at approx. 10m intervals from a height 80cm above ground. The results obtained from image analysis methods using the FFT, the autocorrelation function and wavelets are compared with sensor measured texture depth (SMTD) data obtained from the same paved surface. The results indicate that coefficients of determination (R2) exceeding 0.8 are obtained when up to 10% of outliers are removed.