476 resultados para hyperbolic decomplexification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general differential equation for the propagation of sound in a variable area duct or nozzle carrying incompressible mean flow (of low Mach number) is derived and solved for hyperbolic and parabolic shapes. Expressions for the state variables of acoustic pressure and acoustic mass velocity of the shapes are derived. Self‐consistent expressions for the four‐pole parameters are developed. The conical, exponential, catenoidal, sine, and cosine ducts are shown to be special cases of hyperbolic ducts. Finally, it is shown that if the mean flow in computing the transmission loss of the mufflers involving hyperbolic and parabolic shapes was not neglected, little practical benefit would be derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, by using the Hilbert Uniqueness Method (HUM), we study the exact controllability problem described by the wave equation in a three-dimensional horizontal domain bounded at the bottom by a smooth wall and at the top by a rough wall. The latter is assumed to consist in a plane wall covered with periodically distributed asperities whose size depends on a small parameter epsilon > 0, and with a fixed height. Our aim is to obtain the exact controllability for the homogenized equation. In the process, we study the asymptotic analysis of wave equation in two setups, namely solution by standard weak formulation and solution by transposition method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove a result on the structure of finite proper holomorphic mappings between complex manifolds that are products of hyperbolic Riemann surfaces. While an important special case of our result follows from the ideas developed by Remmert and Stein, the proof of the full result relies on the interplay of the latter ideas and a finiteness theorem for Riemann surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A block-structured adaptive mesh refinement (AMR) technique has been used to obtain numerical solutions for many scientific applications. Some block-structured AMR approaches have focused on forming patches of non-uniform sizes where the size of a patch can be tuned to the geometry of a region of interest. In this paper, we develop strategies for adaptive execution of block-structured AMR applications on GPUs, for hyperbolic directionally split solvers. While effective hybrid execution strategies exist for applications with uniform patches, our work considers efficient execution of non-uniform patches with different workloads. Our techniques include bin-packing work units to load balance GPU computations, adaptive asynchronism between CPU and GPU executions using a knapsack formulation, and scheduling communications for multi-GPU executions. Our experiments with synthetic and real data, for single-GPU and multi-GPU executions, on Tesla S1070 and Fermi C2070 clusters, show that our strategies result in up to a 3.23 speedup in performance over existing strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a hyperbolic problem in the framework of periodic homogenization assuming a high contrast between the diffusivity coefficients of the two components M-epsilon and B-epsilon of the heterogeneous medium. There are three regimes depending on the ratio between the size of the period and the amplitude a, of the diffusivity in B-epsilon. For the critical regime alpha(epsilon) similar or equal to epsilon, the limit problem is a strongly coupled system involving both the macroscopic and the microscopic variables. We also include the results in the non critical case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a hyperbolic problem in the framework of periodic homogenization assuming a high contrast between the diffusivity coefficients of the two components M-epsilon and B-epsilon of the heterogeneous medium. There are three regimes depending on the ratio between the size of the period and the amplitude a, of the diffusivity in B-epsilon. For the critical regime alpha(epsilon) similar or equal to epsilon, the limit problem is a strongly coupled system involving both the macroscopic and the microscopic variables. We also include the results in the non critical case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite compact (FC) difference scheme requiring only bi-diagonal matrix inversion is proposed by using the known high-resolution flux. Introducing TVD or ENO limiters in the numerical flux, several high-resolution FC-schemes of hyperbolic conservation law are developed, including the FC-TVD, third-order FC-ENO and fifth-order FC-ENO schemes. Boundary conditions formulated need only one unknown variable for third-order FC-ENO scheme and two unknown variables for fifth-order FC-ENO scheme. Numerical test results of the proposed FC-scheme were compared with traditional TVD, ENO and WENO schemes to demonstrate its high-order accuracy and high-resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the classic Merton (1969, 1971) problem that investigates the joint consumption-savings and portfolio-selection problem under capital risk by assuming sophisticated but time-inconsistent agents. We introduce stochastic hyperbolic preferences as in Harris and Laibson (2013) and find closed-form solutions for Merton's optimal consumption and portfolio selection problem in continuous time. We find that the portfolio rule remains identical to the time-consistent solution with power utility and no borrowing constraints. However,the marginal propensity to consume out of wealth is unambiguously greater than the time-consistent, exponential case and,importantly, it is also more responsive to changes in risk. These results suggest that hyperbolic discounting with sophisticated agents offers promise for contributing to explaining important aspects of asset market data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gainesville Florida Reef, a satellite of the Worldwide Hyperbolic Crochet Coral Reef, project not only shows the beauty of reefs but serves to: • Foster scientific communication through the visual arts • Raise awareness of the fragility of our coral reefs and the entire ecosystem • Support learning by creating physical models of geometric principles • Connect several areas on campus, including fine arts, mathematics and ecology and environmental sciences through collaboration and mutual interest • Encourage local community and alumni involvement through creating, observing and learning