17 resultados para hydrazines


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes further developments and applications of the catalytic asymmetric Fischer indolization. In the first part of this thesis, the development of an organocatalytic asymmetric synthesis of helicenes via a Fischer indolization is discussed. The application of a novel SPINOL-derived phosphoric acid, featuring extended π-surfaces as 3,3‘-substituents which can potentially participate in π-interactions with the polyaromatic intermediate, afforded the corresponding products in high yields and enantioselectivities. The second part of this work describes the development of a catalytic asymmetric dearomatizing synthesis of 1,4-diketones via an interrupted Fischer indolization. Employing aryl hydrazines with α-substituents next to the hydrazine group prevents the rearomatization which takes place in common Fischer indole syntheses, thus enabling the hydrolysis of the generated diimine species. In the presence of STRIP as catalyst, a variety of different 1,4-diketones could be obtained in generally high yields, diastereo- and enantioselectivities. The last part of this thesis deals with the development of an organocatalytic asymmetric stereodivergent synthesis of novel 3H- and 2H-pyrroles, applying an interrupted Fischer indolization and for the 2H-pyrroles a subsequent stereospecific [1,5]-alkyl shift. Employing STRIP as catalyst afforded the corresponding products in good to excellent yields and enantioselectivities. Preliminary biological investigations of these novel structure motifs in cell-based assays, monitoring biological signal transduction pathways showed an inhibition of the Hedgehog signaling pathway in a μM range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical DFT calculations on rotational barriers of tetrasubstituted hydrazines were performed in order to synthesize new enantioenriched atropoisomers with chiral N-N axis. The molecules studied were chosen to be subsequently synthesized through asymmetric organocatalysis. New atropoisomers with chiral N-N axis were synthesized through organocatalysis methods via enamine or phase transfer. Cinchona alkaloid derivatives were used as catalysts. HPLC analyzes show that the three new synthesized molecules are atropoisomers at room temperature. Using an asymmetric procedure to synthesize the molecules studied, it was possible to generate enantiomeric excesses that remained unchanged for more than three weeks. The experimental rotational barrier of one of the three synthesized compounds was calculated. The experimental energy barrier at 25°C (ΔG^≠=25,7 kcal/mol) was lower than the DFT calculations and with a tendency to increase with temperature, due to a negative reaction entropy.