861 resultados para hybrid composite


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background, aim, and scope A coupled Life Cycle Costing and life cycle assessment has been performed for car-bodies of the Korean Tilting Train eXpress (TTX) project using European and Korean databases, with the objective of assessing environmental and cost performance to aid materials and process selection. More specifically, the potential of polymer composite car-body structures for the Korean Tilting Train eXpress (TTX) has been investigated. Materials and methods This assessment includes the cost of both carriage manufacturing and use phases, coupled with the life cycle environmental impacts of all stages from raw material production, through carriage manufacture and use, to end-of-life scenarios. Metallic carriages were compared with two composite options: hybrid steel-composite and full-composite carriages. The total planned production for this regional Korean train was 440 cars, with an annual production volume of 80 cars. Results and discussion The coupled analyses were used to generate plots of cost versus energy consumption and environmental impacts. The results show that the raw material and manufacturing phase costs are approximately half of the total life cycle costs, whilst their environmental impact is relatively insignificant (3-8%). The use phase of the car-body has the largest environmental impact for all scenarios, with near negligible contributions from the other phases. Since steel rail carriages weigh more (27-51%), the use phase cost is correspondingly higher, resulting in both the greatest environmental impact and the highest life cycle cost. Compared to the steel scenario, the hybrid composite variant has a lower life cycle cost (16%) and a lower environmental impact (26%). Though the full composite rail carriage may have the highest manufacturing cost, it results in the lowest total life cycle costs and lowest environmental impacts. Conclusions and recommendations This coupled cost and life cycle assessment showed that the full composite variant was the optimum solution. This case study showed that coupling of technical cost models with life cycle assessment offers an efficient route to accurately evaluate economic and environmental performance in a consistent way.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm), or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed, <5 nm for catalytic activity, <20 nm for making a hard magnetic material soft, <50 nm for refractive index changes, and <100 nm for achieving superparamagnetism, mechanical strengthening or restricting matrix dislocation movement. Conducting polymers have attracted much attention due to high electrical conductivity, ease of preparation, good environmental stability and wide variety of applications in light-emitting, biosensor chemical sensor, separation membrane and electronic devices. The most widely studied conducting polymers are polypyrrole, polyaniline, polythiophene etc. Conducting polymers provide tremendous scope for tuning of their electrical conductivity from semiconducting to metallic region by way of doping and are organic electro chromic materials with chemically active surface. But they are chemically very sensitive and have poor mechanical properties and thus possessing a processibility problem. Nanomaterial shows the presence of more sites for surface reactivity, they possess good mechanical properties and good dispersant too. Thus nanocomposites formed by combining conducting polymers and inorganic oxide nanoparticles possess the good properties of both the constituents and thus enhanced their utility. The properties of such type of nanocomposite are strongly depending on concentration of nanomaterials to be added. Conducting polymer composites is some suitable composition of a conducting polymer with one or more inorganic nanoparticles so that their desirable properties are combined successfully. The composites of core shell metal oxide particles-conducting polymer combine the electrical properties of the polymer shell and the magnetic, optical, electrical or catalytic characteristics of the metal oxide core, which could greatly widen their applicability in the fields of catalysis, electronics and optics. Moreover nanocomposite material composed of conducting polymers & oxides have open more field of application such as drug delivery, conductive paints, rechargeable batteries, toners in photocopying, smart windows, etc.The present work is mainly focussed on the synthesis, characterization and various application studies of conducting polymer modified TiO2 nanocomposites. The conclusions of the present work are outlined below, Mesoporous TiO2 was prepared by the cationic surfactant P123 assisted hydrothermal synthesis route and conducting polymer modified TiO2 nanocomposites were also prepared via the same technique. All the prepared systems show XRD pattern corresponding to anatase phase of TiO2, which means that there is no phase change occurring even after conducting polymer modification. Raman spectroscopy gives supporting evidence for the XRD results. It also confirms the incorporation of the polymer. The mesoporous nature and surface area of the prepared samples were analysed by N2 adsorption desorption studies and the mesoporous ordering can be confirmed by low angle XRD measurementThe morphology of the prepared samples was obtained from both SEM & TEM. The elemental analysis of the samples was performed by EDX analysisThe hybrid composite formation is confirmed by FT-IR spectroscopy and X-ray photoelectron spectroscopyAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systemsAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systems Polyaniline modified TiO2 nanocomposite systems were found to have good antibacterial activity. Thermal diffusivity studies of the polyaniline modified systems were carried out using thermal lens technique. It is observed that as the amount of polyaniline in the composite increases the thermal diffusivity also increases. The prepared systems can be used as an excellent coolant in various industrial purposes. Nonlinear optical properties (3rd order nonlinearity) of the polyaniline modified systems were studied using Z scan technique. The prepared materials can be used for optical limiting Applications. Lasing studies of polyaniline modified TiO2 systems were carried out and the studies reveal that TiO2 - Polyaniline composite is a potential dye laser gain medium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to determine the effect of two light-curing units (QTH and LED) on microleakage of Class II composite resin restorations with dentin cavosurface margins. Twenty extracted mandibular first premolars, free of caries and fractures were prepared two vertical slot cavities in the occluso-mesial and -destal surfaces (2 mm buccal-lingually, 2 mm proximal-axially and cervical limit in enamel) and divided into 4 equal groups (n = 8): GI and GII: packable posterior composite light-activated with LED and QTH, respectively; GIII and GIV: micro-hybrid composite resin light-activated with LED and QTH, respectively. The composite resins were applied following the manufacturer's instructions. After 24 h of water storage specimens were subjected to thermocycling for a total of 500 cycles at 5 and 55A degrees C and the teeth were then sealed with impermeable material. Teeth were immersed in 0.5% Basic fuchsin during 24 h at room temperature, and zero to three levels of penetration score were attributed. The Mann-Whitney and Kruskal-Wallis tests showed significant statistically similar (P > 0.05) from GI to GII and GIII to GIV, which the GII (2.750) had the highest mean scores and the GIII and GIV (0.875) had lowest mean scores. The use of different light-curing units has no influence on marginal integrity of Class II composite resin restorations and the proprieties of composite resins are important to reduce the microleakage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A laboratory study was performed to assess the influence of beveling the margins of cavities and the effects on marginal adaptation of the application of ultrasound during setting and initial light curing. After minimal access cavities had been prepared with an 80 microm diamond bur, 80 box-only Class II cavities were prepared mesially and distally in 40 extracted human molars using four different oscillating diamond coated instruments: (A) a U-shaped PCS insert as the non-beveled control (EMS), (B) Bevelshape (Intensiv), (C) SonicSys (KaVo) and (D) SuperPrep (KaVo). In groups B-D, the time taken for additional bevel finishing was measured. The cavities were filled with a hybrid composite material in three increments. Ultrasound was also applied to one cavity per tooth before and during initial light curing (10 seconds). The specimens were subjected to thermomechanical stress in a computer-controlled masticator device. Marginal quality was assessed by scanning electron microscopy and the results were compared statistically. The additional time required for finishing was B > D > C (p < or = 0.05). In all groups, thermomechanical loading resulted in a decrease in marginal quality. Beveling resulted in higher values for "continuous" margins compared with that of the unbeveled controls. The latter showed better marginal quality at the axial walls when ultrasound was used. Beveling seems essential for good marginal adaptation but requires more preparation time. The use of ultrasonic vibrations may improve the marginal quality of unbeveled fillings and warrants further investigation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon Fiber Reinforced Polymers (CFRPs) display high specific mechanical properties, allowing the creation of lightweight components and products by metals replacement. To reach outstanding mechanical performances, the use of stiff thermoset matrices, like epoxy, is preferred. Laminated composites are commonly used for their ease of manipulation during object manufacturing. However, the natural anisotropic structure of laminates makes them vulnerable toward delamination. Moreover, epoxy-based CFRPs are very stiff materials, thus showing low damping capacity, which results in unwanted vibrations and structure-borne noise that may contribute to delamination triggering. Hence, searching for systems able to limit these drawbacks is of primary importance for safety reasons, as well as for economic ones. In this experimental thesis, the production and integration of innovative rubbery nanofibrous mats into CFRP laminates are presented. A smart approach, based on single-needle electrospinning of rubber-containing blends, is proposed for producing dimensionally stable rubbery nanofibers without the need for rubber crosslinking. Nano-modified laminates aim at obtaining structural composites with improved delamination resistance and enhanced damping capacity, without significantly lowering other relevant mechanical properties. The possibility of producing nanofibers nano-reinforced with graphene to be applied for reinforcing composite laminates is also investigated. Moreover, the use of piezoelectric nanofibrous mats in hybrid composite laminates for achieving self-sensing capability is presented too as a different approach to prevent the catastrophic consequences of possible structural laminate failure. Finally, an accurate, systematic, and critical study concerning tensile testing of nonwovens, using electrospun Nylon 66 random nanofibrous mats as a case study, is proposed. Nanofibers diameter and specimen geometry were investigated to thoroughly describe the nanomat tensile behaviour, also considering the polymer thermal properties, and the number of nanofibers crossings as a function of the nanofibers diameter. Stress-strain data were also analysed using a phenomenological data fitting model to interpret the tensile behaviour better.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: This study investigated the effect of different ferrule heights on endodontically treated premolars. MATERIAL AND METHODS: Fifty sound mandibular first premolars were endodontically treated and then restored with 7-mm fiber post (FRC Postec Plus #1 Ivoclar-Vivadent) luted with self-polymerized resin cement (Multilink, Ivoclar Vivadent) while the coronal section was restored with hybrid composite core build-up material (Tetric Ceram, Ivoclar-Vivadent), which received all-ceramic crown. Different ferrule heights were investigated: 1-mm circumferential ferrule without post and core (group 1 used as control), a circumferential 1-mm ferrule (group 2), non-uniform ferrule 2-mm buccally and 1-mm lingually (group 3), non-uniform ferrule 3-mm buccally and 2-mm lingually (group 4), and finally no ferrule preparation (group 5). The fracture load and failure pattern of the tested groups were investigated by applying axial load to the ceramic crowns (n=10). Data were analyzed statistically by one-way ANOVA and Tukey's post-hoc test was used for pair-wise comparisons (α=0.05). RESULTS: There were no significant differences among the failure load of all tested groups (P<0.780). The control group had the lowest fracture resistance (891.43±202.22 N) and the highest catastrophic failure rate (P<0.05). Compared to the control group, the use of fiber post reduced the percentage of catastrophic failure while increasing the ferrule height did not influence the fracture resistance of the restored specimens. CONCLUSIONS: Within the limitations of this study, increasing the ferrule length did not influence the fracture resistance of endodontically treated teeth restored with glass ceramic crowns. Insertion of a fiber post could reduce the percentage of catastrophic failure of these restorations under function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Milkfat-soybean oil blends were enzymatically interesterified (EIE) by Aspergillus niger lipase immobilized on SiO(2)-PVA hybrid composite in a solvent free system. An experimental mixture design was used to study the effects of binary blends of milkfat-soybean oil (MF:SBO) at different proportions (0:100; 25:75; 33:67; 50:50; 67:33; 75:25; 100:0) on the compositional and textural properties of the EIE products, considering, as response variables, the interesterification yield (IY), consistency and hardness. Lipase-catalysed interesterification reactions increased the relative proportion of TAGs` C(46)-C(52) and decreased the TAGs` C(40)-C(42) and C(54) concentrations. The highest IY was attained (10.8%) for EIE blend of MF:SBO 67:33 resulting in a more spreadable material at refrigerator temperature in comparison with butter, milkfat or non-interesterified (NIE) blend. In this case, consistency and hardness values were at least 32% lower than values measured for butter. Thus, using A. niger lipase immobilized on SiO(2)-PVA improves the textural properties of milkfat and has potential for development of a product incorporating unsaturated and essential fatty acids from soybean oil. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seven food grade commercially available lipases were immobilized by covalent binding on polysiloxane-polyvinyl alcohol (POS-PVA) hybrid composite and screened to mediate reactions of industrial interest. The synthesis of butyl butyrate and the interesterification of tripalmitin with triolein were chosen as model reactions. The highest esterification activity (240.63 mu M/g min) was achieved by Candida rugosa lipase, while the highest interesterification yield (31%, in 72 h) was achieved by lipase from Rhizopus oryzae, with the production of about 15 mM of the triglycerides C(50) and C(52). This lipase also showed a good performance in butyl butyrate synthesis, with an esterification activity of 171.14 mu M/g min. The results demonstrated the feasibility of using lipases from C. rugosa for esterification and R. oryzae lipase for both esterification and interesterification reactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The objective of this study was to evaluate the influence of the surface treatment and acid conditioning (AC) time of bovine sclerotic dentine on the micro-tensile bond strength (mu-TBS) to an etch and rinse adhesive system. Materials and method: Thirty-six bovine incisors were divided into six groups (n = 6): G1 sound dentine submitted to AC for 15 s; G2-G6 sclerotic dentine: G2-AC for 15 s; G3-AC for 30 s; G4-EDTA and AC for 15 s; G5-diamond bur and AC for 15 s; G6-diamond paste and AC for 15 s. An adhesive system was applied to the treated dentine surfaces followed by a hybrid composite inserted in increments and light cured. After 24 h storage in water at 37 degrees C, the specimens were perpendicularly cut with a low-speed diamond saw to obtain beams (0.8 mm x 0.8 mm cross-sectional dimensions) for mu-TBS testing. Data was compared by ANOVA followed by Tukey`s test (P <= 0.05). Results: The mean L-TBS was G1: 18.87 +/- 5.36 MPa; G2: 12.94 +/- 2.09 MPa; G3: 11.73 +/- 0.64 MPa; G4: 11.14 +/- 1.50 MPa; G5: 22.75 +/- 4.10 MPa; G6: 22.48 +/- 2.71 MPa. G1, G5 and G6 presented similar bond strengths significantly higher than those of all other groups. Conclusion: The surface treatment of sclerotic dentine significantly influenced the bond strength to an adhesive system. Mechanical treatment, either using a diamond bur or a diamond paste was able to improve bonding to bovine sclerotic dentine, reaching values similar to bonding to sound dentine. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2007.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: (1) To evaluate the changes in surface roughness and gloss after simulated toothbrushing of 9 composite materials and 2 ceramic materials in relation to brushing time and load in vitro; (2) to assess the relationship between surface gloss and surface roughness. METHODS: Eight flat specimens of composite materials (microfilled: Adoro, Filtek Supreme, Heliomolar; microhybrid: Four Seasons, Tetric EvoCeram; hybrid: Compoglass F, Targis, Tetric Ceram; macrohybrid: Grandio), two ceramic materials (IPS d.SIGN and IPS Empress polished) were fabricated according to the manufacturer's instructions and optimally polished with up to 4000 grit SiC. The specimens were subjected to a toothbrushing (TB) simulation device (Willytec) with rotating movements, toothpaste slurry and at three different loads (100g/250g/350g). At hourly intervals from 1h to 10h TB, mean surface roughness Ra was measured with an optical sensor and the surface gloss (Gl) with a glossmeter. Statistical analysis was performed for log-transformed Ra data applying two-way ANOVA to evaluate the interaction between load and material and load and brushing time. RESULTS: There was a significant interaction between material and load as well as between load and brushing time (p<0.0001). The microhybrid and hybrid materials demonstrated more surface deterioration with higher loads, whereas with the microfilled resins Heliomolar and Adoro it was vice versa. For ceramic materials, no or little deterioration was observed over time and independent of the load. The ceramic materials and 3 of the composite materials (roughness) showed no further deterioration after 5h of toothbrushing. Mean surface gloss was the parameter which discriminated best between the materials, followed by mean surface roughness Ra. There was a strong correlation between surface gloss and surface roughness for all the materials except the ceramics. The evaluation of the deterioration curves of individual specimens revealed a more or less synchronous course suspecting hinting specific external conditions and not showing the true variability in relation to the tested material. SIGNIFICANCE: The surface roughness and gloss of dental materials changes with brushing time and load and thus results in different material rankings. Apart from Grandio, the hybrid composite resins were more prone to surface changes than microfilled composites. The deterioration potential of a composite material can be quickly assessed by measuring surface gloss. For this purpose, a brushing time of 10h (=72,000 strokes) is needed. In further comparative studies, specimens of different materials should be tested in one series to estimate the true variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, a novel hybrid composite based on biodegradable hydrogel and Portland cement with promising technological properties was reported. In the first step, a full 23 with central point factorial design was utilized to obtain the enhanced polyacrylamide-carboxymethylcellulose hydrogel compositions. A mathematical model was devised, indicating that the 3 main variables were significant and the AAm and MBAAm variables positively contributed to the mode and showing that the CMC variable had the opposite contribution. In the second step, these compositions were mixed with Portland cement to obtain the hybrid composites. The presence of cement improved the mechanical properties of polymeric matrices, and electronic microscopic micrographics revealed that the hydrogels were well adhered to the cement phase and no phase separation between hydrogel and cement was detected. Finally, using the energy dispersive X-ray technique, the elements Na, Mg, Al, Si, S, K, Ca and Fe were detected in the polymeric matrix, consistent with the hybrid composite formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diplomityön tarkoituksena oli tutkia hybridikomposiittien soveltuvuutta tuulivoimalan osien tai osakokonaisuuksien rakennemateriaaliksi. Lähtökohtana oli selvittää erityisesti luonnonkuitukomposiitin materiaaliteknisten ominaisuuksien, etenkin lujuusominaisuuksi-en soveltuminen tuulivoiman rakenteisiin. Työn johdanto-osuudessa esitellään tuulivoiman rooli tämän päivän energiantuotannossa, yksittäisen tuulivoimalalaitoksen rakenne, rakenteiden suunnittelussa huomioitavat seikat, voimalan eri osien kuten tornin, lapojen ja nasellin yleisimmät valmistusmenetelmät, sekä muovien ja eri lujitteiden ohella puumuovikomposiitin materiaaliominaisuudet, valmistus-menetelmät ja yleisimmät käyttökohteet. Hybridikomposiittien lujuusominaisuuksia tutkittiin Lappeenrannan teknillisen yliopiston puutekniikan laboratoriossa suoritetuissa mittauksissa. Saatuja tuloksia verrattiin referens-situlosten ohella myös tällä hetkellä tuulivoimalan rakenteissa yleisesti käytettävien lasi- ja hiilikuidun, sekä teräksen ominaisuuksiin. Mittaustulosten perusteella bambu- ja lasikuitu-lujitteiset puumuovikomposiitit soveltuvat parhaiten tuulivoimalarakenteisiin, mutta niiden valmistaminen ekstruusiomenetelmällä on melko haasteellista.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sauf par des regards fugitifs et distraits sur son travail d’illustrateur et son théâtre de marionnettes, l’histoire culturelle et littéraire n’a en général retenu de Maurice Sand que son état de fils bien-aimé de la plus célèbre écrivaine du 19e siècle. Étudiée pour elle-même, son œuvre multidisciplinaire - qui allie peinture, dessin, illustration, théâtre, histoire de l’art, sciences naturelles - se propose pourtant avec cohérence, marque d’une création soutenue plutôt que du dilettantisme où son souvenir s’est incrusté. Maurice Sand apparaît alors comme un de ces individus situés aux interstices des récits majeurs de la littérature et des arts qui, bien qu’ayant figure de minores, amènent à des réflexions nuancées sur la constitution de ces récits. Explorer son cas permet ainsi de scruter de plus près les mécanismes de la méconnaissance qui a pu et peut encore affecter un créateur et une œuvre soumis aux arbitrages mémoriels. Discrets angles morts de l’histoire, certains de ces mécanismes jalonnent clairement son parcours et les aléas de sa trace posthume. D’une part le vaste corpus des études sur George Sand, notamment des écrits biographiques et autobiographiques, fait voir à l’œuvre le mode déformant de la constitution de la mémoire d’un être saisi à partir des positions d’autrui : son existence devient cliché, elle se réduit peu à peu au rôle d’adjuvant dans des débats, passés ou actuels, qui font l’impasse sur le cours autonome de sa carrière, voire de sa vie. D’autre part la mise au jour de son œuvre, enfin vue comme un ensemble, dévoile une cause encore plus déterminante de sa méconnaissance. Presque tous les travaux de Maurice Sand sont traversés par une ligne de fantastique, au surplus connotée par son intérêt pour les sciences liées à la métamorphose, de l’ethnogénie à l’entomologie. Réinvention constante du passé, sa démarche cognitive et créatrice ignore les frontières disciplinaires, son objet est hybride et composé. L’œuvre se constitue ainsi par transversalité, trait et trame irrecevables en un siècle qui n’y perçut que dispersion, mais paradoxalement marque supérieure de qualité dans le champ éclaté où se déploient les arts de notre temps.