28 resultados para hwcom
Resumo:
Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI) is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5HT), respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn) spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury) and CNS (spinal cord injury) damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain.
Resumo:
Periprostatic or paravaginal venous thromboses are rarely considered clinically as sites of clot origin in patients with pulmonary thromboembolism. The majority of emboli have been demonstrated to originate in the veins of the legs. This report raises awareness of pelvic vein thrombosis as a potential source of pulmonary embolism that is rarely considered or detected clinically, and which usually requires postmortem examination for recognition. It also reviews the possible routes emboli may take to reach the lungs.
Resumo:
Despite significant advances in highly active antiretroviral therapy (HAART), the prevalence of neuroAIDS remains high. This is mainly attributed to inability of antiretroviral therapy (ART) to cross the blood–brain barrier (BBB), thus resulting in insufficient drug concentration within the brain. Therefore, development of an active drug targeting system is an attractive strategy to increase the efficacy and delivery of ART to the brain. We report herein development of magnetic azidothymidine 5′-triphosphate (AZTTP) liposomal nanoformulation and its ability to transmigrate across an in vitro BBB model by application of an external magnetic field. We hypothesize that this magnetically guided nanoformulation can transverse the BBB by direct transport or via monocyte-mediated transport. Magnetic AZTTP liposomes were prepared using a mixture of phosphatidyl choline and cholesterol. The average size of prepared liposomes was about 150 nm with maximum drug and magnetite loading efficiency of 54.5% and 45.3%, respectively. Further, magnetic AZTTP liposomes were checked for transmigration across an in vitro BBB model using direct or monocyte-mediated transport by application of an external magnetic field. The results show that apparent permeability of magnetic AZTTP liposomes was 3-fold higher than free AZTTP. Also, the magnetic AZTTP liposomes were efficiently taken up by monocytes and these magnetic monocytes showed enhanced transendothelial migration compared to normal/non-magnetic monocytes in presence of an external magnetic field. Thus, we anticipate that the developed magnetic nanoformulation can be used for targeting active nucleotide analog reverse transcriptase inhibitors to the brain by application of an external magnetic force and thereby eliminate the brain HIV reservoir and help to treat neuroAIDS.
Resumo:
This paper for the first time discusses a computational study of using magneto-electric (ME) nanoparticles to artificially stimulate the neural activity deep in the brain. The new technology provides a unique way to couple electric signals in the neural network to the magnetic dipoles in the nanoparticles with the purpose to enable a non-invasive approach. Simulations of the effect of ME nanoparticles for non-invasively stimulating the brain of a patient with Parkinson’s Disease to bring the pulsed sequences of the electric field to the levels comparable to those of healthy people show that the optimized values for the concentration of the 20-nm nanoparticles (with the magneto-electric (ME) coefficient of 100 V cm21 Oe21 in the aqueous solution) is 36106 particles/cc, and the frequency of the externally applied 300-Oe magnetic field is 80 Hz.
Resumo:
Cocaine and other drugs of abuse increase HIV-induced immunopathogenesis; and neurobiological mechanisms of cocaine addiction implicate a key role for microRNAs (miRNAs), single-stranded non-coding RNAs that regulate gene expression and defend against viruses. In fact, HIV defends against miRNAs by actively suppressing the expression of polycistronic miRNA cluster miRNA-17/92, which encodes miRNAs including miR-20a. IFN-g production by natural killer cells is regulated by miR-155 and this miRNA is also critical to dendritic cell (DC) maturation. However, the impact of cocaine on miR-155 expression and subsequent HIV replication is unknown. We examined the impact of cocaine on two miRNAs, miR-20a and miR-155, which are integral to HIV replication, and immune activation. Using miRNA isolation and analysis, RNA interference, quantitative real time PCR, and reporter assays we explored the effects of cocaine on miR-155 and miR-20 in the context of HIV infection. Here we demonstrate using monocyte-derived dendritic cells (MDCCs) that cocaine significantly inhibited miR-155 and miR-20a expression in a dose dependent manner. Cocaine and HIV synergized to lower miR-155 and miR-20a in MDDCs by 90%. Cocaine treatment elevated LTR-mediated transcription and PU.1 levels in MDCCs. But in context of HIV infection, PU.1 was reduced in MDDCs regardless of cocaine presence. Cocaine increased DC-SIGN and and decreased CD83 expression in MDDC, respectively. Overall, we show that cocaine inhibited miR-155 and prevented maturation of MDDCs; potentially, resulting in increased susceptibility to HIV-1. Our findings could lead to the development of novel miRNA-based therapeutic strategies targeting HIV infected cocaine abusers.
Resumo:
NOTCH1 is a member of the NOTCH receptor family, a group of single-pass trans-membrane receptors. NOTCH signaling is highly conserved in evolution and mediates communication between adjacent cells. NOTCH receptors have been implicated in cell fate determination, as well as maintenance and differentiation of stem cells. In the mammalian testis expression of NOTCH1 in somatic and germ cells has been demonstrated, however its role in spermatogenesis was not clear. To study the significance of NOTCH1 in germ cells, we applied a cre/loxP approach in mice to induce NOTCH1 gain- or loss-of function specifically in male germ cells. Using a Stra8-icretransgene we produced mice with conditional activation of the NOTCH1 intracellular domain (NICD) in germ cells. Spermatogenesis in these mutants was progressively affected with age, resulting in decreased testis weight and sperm count. Analysis of downstream target genes of NOTCH1 signaling showed an increased expression of Hes5, with a reduction of the spermatogonial differentiation marker, Neurog3 expression in the mutant testis. Apoptosis was significantly increased in mouse germ cells with the corresponding elevation of pro-apoptotic Trp53 and Trp63genes' expression. We also showed that the conditional germ cell-specific ablation of Notch1 had no effect on spermatogenesis or male fertility. Our data suggest the importance of NOTCH signaling regulation in male germ cells for their survival and differentiation.
Resumo:
Persistence of HIV-1 reservoirs within the Central Nervous System (CNS) remains a significant challenge to the efficacy of potent anti-HIV-1 drugs. The primary human Brain Microvascular Endothelial Cells (HBMVEC) constitutes the Blood Brain Barrier (BBB) which interferes with anti-HIV drug delivery into the CNS. The ATP binding cassette (ABC) transporters expressed on HBMVEC can efflux HIV-1 protease inhibitors (HPI), enabling the persistence of HIV-1 in CNS. Constitutive low level expression of several ABC-transporters, such as MDR1 (a.k.a. P-gp) and MRPs are documented in HBMVEC. Although it is recognized that inflammatory cytokines and exposure to xenobiotic drug substrates (e.g HPI) can augment the expression of these transporters, it is not known whether concomitant exposure to virus and anti-retroviral drugs can increase drug-efflux functions in HBMVEC. Our in vitro studies showed that exposure of HBMVEC to HIV-1 significantly up-regulates both MDR1 gene expression and protein levels; however, no significant increases in either MRP-1 or MRP-2 were observed. Furthermore, calcein-AM dye-efflux assays using HBMVEC showed that, compared to virus exposure alone, the MDR1 mediated drug-efflux function was significantly induced following concomitant exposure to both HIV-1 and saquinavir (SQV). This increase in MDR1 mediated drug-efflux was further substantiated via increased intracellular retention of radiolabeled [3H-] SQV. The crucial role of MDR1 in 3H-SQV efflux from HBMVEC was further confirmed by using both a MDR1 specific blocker (PSC-833) and MDR1 specific siRNAs. Therefore, MDR1 specific drug-efflux function increases in HBMVEC following co-exposure to HIV-1 and SQV which can reduce the penetration of HPIs into the infected brain reservoirs of HIV-1. A targeted suppression of MDR1 in the BBB may thus provide a novel strategy to suppress residual viral replication in the CNS, by augmenting the therapeutic efficacy of HAART drugs.
Resumo:
Background The etiology of most premature ovarian failure (POF) cases is usually elusive. Although genetic causes clearly exist and a likely susceptible region of 8q22.3 has been discovered, no predominant explanation exists for POF. More recently, evidences have indicated that mutations in NR5A1 gene could be causative for POF. We therefore screened for mutations in the NR5A1 gene in a large cohort of Chinese women with non-syndromic POF. Methods Mutation screening of NR5A1 gene was performed in 400 Han Chinese women with well-defined 46,XX idiopathic non-syndromic POF and 400 controls. Subsequently, functional characterization of the novel mutation identified was evaluated in vitro. Results A novel heterozygous missense mutation [c.13T>G (p.Tyr5Asp)] in NR5A1 was identified in 1 of 384 patients (0.26%). This mutation impaired transcriptional activation on Amh, Inhibin-a, Cyp11a1and Cyp19a1 gene, as shown by transactivation assays. However, no dominant negative effect was observed, nor was there impact on protein expression and nuclear localization. Conclusions This novel mutation p.Tyr5Asp, in a novel non-domain region, is presumed to result in haploinsufficiency. Irrespectively, perturbation in NR5A1 is not a common explanation for POF in Chinese.
Resumo:
Background A subgroup has emerged within the obese that do not display the typical metabolic disorders associated with obesity and are hypothesized to have lower risk of complications. The purpose of this review was to analyze the literature which has examined the burden of cardiovascular disease (CVD) and all-cause mortality in the metabolically healthy obese (MHO) population. Methods Pubmed, Cochrane Library, and Web of Science were searched from their inception until December 2012. Studies were included which clearly defined the MHO group (using either insulin sensitivity and/or components of metabolic syndrome AND obesity) and its association with either all cause mortality, CVD mortality, incident CVD, and/or subclinical CVD. Results A total of 20 studies were identified; 15 cohort and 5 cross-sectional. Eight studies used the NCEP Adult Treatment Panel III definition of metabolic syndrome to define “metabolically healthy”, while another nine used insulin resistance. Seven studies assessed all-cause mortality, seven assessed CVD mortality, and nine assessed incident CVD. MHO was found to be significantly associated with all-cause mortality in two studies (30%), CVD mortality in one study (14%), and incident CVD in three studies (33%). Of the six studies which examined subclinical disease, four (67%) showed significantly higher mean common carotid artery intima media thickness (CCA-IMT), coronary artery calcium (CAC), or other subclinical CVD markers in the MHO as compared to their MHNW counterparts. Conclusions MHO is an important, emerging phenotype with a CVD risk between healthy, normal weight and unhealthy, obese individuals. Successful work towards a universally accepted definition of MHO would improve (and simplify) future studies and aid inter-study comparisons. Usefulness of a definition inclusive of insulin sensitivity and stricter criteria for metabolic syndrome components as well as the potential addition of markers of fatty liver and inflammation should be explored. Clinicians should be hesitant to reassure patients that the metabolically benign phenotype is safe, as increased risk cardiovascular disease and death have been shown.
Resumo:
Current methods of understanding microbiome composition and structure rely on accurately estimating the number of distinct species and their relative abundance. Most of these methods require an efficient PCR whose forward and reverse primers bind well to the same, large number of identifiable species, and produce amplicons that are unique. It is therefore not surprising that currently used universal primers designed many years ago are not as efficient and fail to bind to recently cataloged species. We propose an automated general method of designing PCR primer pairs that abide by primer design rules and uses current sequence database as input. Since the method is automated, primers can be designed for targeted microbial species or updated as species are added or deleted from the database. In silico experiments and laboratory experiments confirm the efficacy of the newly designed primers for metagenomics applications.
Resumo:
Background HIV infection and drugs of abuse such as methamphetamine (METH), cocaine, and alcohol use have been identified as risk factors for triggering inflammation. Acute phase proteins such as C-reactive protein (CRP) and serum amyloid A (SAA) are the biomarkers of inflammation. Hence, the interactive effect of drugs of abuse with acute phase proteins in HIV-positive subjects was investigated. Methods Plasma samples were utilized from 75 subjects with METH use, cocaine use, alcohol use, and HIV-positive alone and HIV-positive METH, cocaine, and alcohol users, and age-matched control subjects. The plasma CRP and SAA levels were measured by ELISA and western blot respectively and the CD4 counts were also measured. Results Observed results indicated that the CRP and SAA levels in HIV-positive subjects who are METH, cocaine and alcohol users were significantly higher when compared with either drugs of abuse or HIV-positive alone. The CD4 counts were also dramatically reduced in HIV-positive with drugs of abuse subjects compared with only HIV-positive subjects. Conclusions These results suggest that, in HIV-positive subjects, drugs of abuse increase the levels of CRP and SAA, which may impact on the HIV infection and disease progression.
Resumo:
The environmental niche of the spermatogonial stem cell pool is critical to ensure the continued generation of the germ cell population. To study the consequences of an aberrant testicular environment in cryptorchidism we used a mouse model with a deletion of Rxfp2 gene resulting in a high intra-abdominal testicular position. Mutant males were infertile with the gross morphology of the cryptorchid testis progressively deteriorating with age. Few spermatogonia were identifiable in 12 month old cryptorchid testes. Gene expression analysis showed no difference between mutant and control testes at postnatal day 10. In three month old males a decrease in expression of spermatogonial stem cell (SSC) markers Id4, Nanos2, and Ret was shown. The direct counting of ID4+ cells supported a significant decrease of SSCs. In contrast, the expression of Plzf, a marker for undifferentiated and differentiating spermatogonia was not reduced, and the number of PLZF+ cells in the cryptorchid testis was higher in three month old testes, but equal to control in six month old mutants. The PLZF+ cells did not show a higher rate of apoptosis in cryptorchid testis. The expression of the Sertoli cell FGF2 gene required for SSC maintenance was significantly reduced in mutant testis. Based on these findings we propose that the deregulation of somatic and germ cell genes in the cryptorchid testis, directs the SSCs towards the differentiation pathway. This leads to a depletion of the SSC pool and an increase in the number of PLZF+ spermatogonial cells, which too, eventually decreases with the exhaustion of the stem cell pool. Such a dynamic suggests that an early correction of cryptorchidism is critical for the retention of the SSC pool.
Resumo:
Pythagoras, Plato and Euclid’s paved the way for Classical Geometry. The idea of shapes that can be mathematically defined by equations led to the creation of great structures of modern and ancient civilizations, and milestones in mathematics and science. However, classical geometry fails to explain the complexity of non-linear shapes replete in nature such as the curvature of a flower or the wings of a Butterfly. Such non-linearity can be explained by fractal geometry which creates shapes that emulate those found in nature with remarkable accuracy. Such phenomenon begs the question of architectural origin for biological existence within the universe. While the concept of a unifying equation of life has yet to be discovered, the Fibonacci sequence may establish an origin for such a development. The observation of the Fibonacci sequence is existent in almost all aspects of life ranging from the leaves of a fern tree, architecture, and even paintings, makes it highly unlikely to be a stochastic phenomenon. Despite its wide-spread occurrence and existence, the Fibonacci series and the Rule of Golden Proportions has not been widely documented in the human body. This paper serves to review the observed documentation of the Fibonacci sequence in the human body.