986 resultados para hormone receptors
Resumo:
The aim of the present study was to detect progesterone receptors (A and B isoforms), α and β estrogen receptors, luteinizing hormone receptors and aromatase cytochrome P450 enzymes in the corpus luteum of Nelore (Bos taurus indicus) cows using immunohistochemistry. The estrous cycles of 16 Nelore cows were synchronized, and luteal samples were collected via an incision into the vaginal vault. Samples were collected during specific days of the estrous cycle (days 6, 10, 15 and 18) and 24. h after circulating progesterone dropped, after luteolysis had occurred. After each biopsy was taken, all animals were resynchronized so that each biopsy was performed during a different estrous cycle. Our results showed that the concentration of studied proteins vary throughout the bovine estrous cycle. The highest concentration of α and β estrogen receptors and the highest concentration of plasma progesterone were both observed on days 10 and 15 of the estrous cycle. The highest concentration of progesterone receptors was observed on days 6 and 10 of the estrous cycle, and the most intense immunostaining for cytochrome P450 aromatase enzymes was observed on day 10 of the estrous cycle. The highest score of cells with plasma membrane immunostaining for LH receptors was observed on day 15 of the estrous cycle. In conclusion, this study demonstrates the varying concentrations of specific proteins within the corpus luteum of Nelore cows during the estrous cycle. This finding suggests that these receptors and enzymes, and their interactions, are important in regulating luteal viability. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: To examine the effect of different doses of triiodothyronine (T3) on mRNA levels of thyroid hormone receptors, TRα and TRβ, at different times. Materials and methods: 3T3-L1 adipocytes were incubated with T3 (physiological dose: F; supraphysiological doses: SI or SII), or without T3 (control, C) for 0.5, 1, 6, or 24h. TRα and TRβ mRNA was detected using real-time polymerase chain reaction. Results: F increased TRβ mRNA levels at 0.5h. After 1h, TRα levels increased with F and SI and TRβ levels decreased with SII compared with C, F, and SI. After 6h, both genes were suppressed at all concentrations. In 24h, TRα and TRβ levels were similar to those of C group. Conclusions: T3 action with F began at 1h for TRα and at 0.5h for TRβ. These results suggest the importance of knowing the times and doses that activate T3 receptors in adipocytes.
Resumo:
Through alternative splicing, multiple different transcripts can be generated from a single gene. Alternative splicing represents an important molecular mechanism of gene regulation in physiological processes such as developmental programming as well as in disease. In cancer, splicing is significantly altered. Tumors express a different collection of alternative spliceoforms than normal tissues. Many tumor-associated splice variants arise from genes with an established role in carcinogenesis or tumor progression, and their functions can be oncogenic. This raises the possibility that products of alternative splicing play a pathogenic role in cancer. Moreover, cancer-associated spliceoforms represent potential diagnostic biomarkers and therapeutic targets. G protein-coupled peptide hormone receptors provide a good illustration of alternative splicing in cancer. The wild-type forms of these receptors have long been known to be expressed in cancer and to modulate tumor cell functions. They are also recognized as attractive clinical targets. Recently, splice variants of these receptors have been increasingly identified in various types of cancer. In particular, alternative cholecystokinin type 2, secretin, and growth hormone-releasing hormone receptor spliceoforms are expressed in tumors. Peptide hormone receptor splice variants can fundamentally differ from their wild-type receptor counterparts in pharmacological and functional characteristics, in their distribution in normal and malignant tissues, and in their potential use for clinical applications.
Resumo:
Thyroid hormone is a critical mediator of central nervous system (CNS) development, acting through nuclear receptors to modulate the expression of specific genes. Transcription of the rat hairless (hr) gene is highly up-regulated by thyroid hormone in the developing CNS; we show here that hr is directly induced by thyroid hormone. By identifying proteins that interact with the hr gene product (Hr), we find that Hr interacts directly and specifically with thyroid hormone receptor (TR)—the same protein that regulates its expression. Unlike previously described receptor-interacting factors, Hr associates with TR and not with retinoic acid receptors (RAR, RXR). Hr can act as a transcriptional repressor, suggesting that its interaction with TR is part of a novel autoregulatory mechanism.
Resumo:
We previously have demonstrated that insulin and insulin-like growth factor-I (IGF-I) down-regulate growth hormone (GH) binding in osteoblasts by reducing the number of surface GH receptors (GHRs). The present study was undertaken to investigate the mechanism of GHR down-regulation. Treatment with 5 nM insulin or IGF-I for 18 hr significantly decreased surface GH binding to 26.4 ± 2.9% and 23.0 ± 2.7% of control (mean ± SE; P < 0.05), respectively. No corresponding reductions in the mRNA level and total cellular content of GHR were found, nor was the rate of receptor internalization affected. The effects on GHR translocation were assessed by measuring the reappearance of GH binding of whole cells after trypsinization to remove the surface receptors. GH binding of control cultures significantly increased (P < 0.05) over 2 hr after trypsinization, whereas no recovery of binding activity was detected in insulin and IGF-I-treated cultures, indicating that GHR translocation was impaired. Studies on the time course of GHR down-regulation revealed that surface GH binding was reduced significantly by 3-hr treatment (P ≤ 0.0005), whereas GHR translocation was completely abolished by 75–90 min with insulin and IGF-I. The inhibition of receptor translocation by insulin, but not IGF-I, was attenuated by wortmannin. In conclusion, insulin and IGF-I down-regulated GH binding in osteoblasts by acutely impairing GHR translocation, with their effects exerted through distinct postreceptor signaling pathways.
Resumo:
The proliferation of various tumors is inhibited by the antagonists of growth hormone-releasing hormone (GHRH) in vitro and in vivo, but the receptors mediating the effects of GHRH antagonists have not been identified so far. Using an approach based on PCR, we detected two major splice variants (SVs) of mRNA for human GHRH receptor (GHRH-R) in human cancer cell lines, including LNCaP prostatic, MiaPaCa-2 pancreatic, MDA-MB-468 breast, OV-1063 ovarian, and H-69 small-cell lung carcinomas. In addition, high-affinity, low-capacity binding sites for GHRH antagonists were found on the membranes of cancer cell lines such as MiaPaCa-2 that are negative for the vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide receptor (VPAC-R) or lines such as LNCaP that are positive for VPAC-R. Sequence analysis of cDNAs revealed that the first three exons in SV1 and SV2 are replaced by a fragment of retained intron 3 having a new putative in-frame start codon. The rest of the coding region of SV1 is identical to that of human pituitary GHRH-R, whereas in SV2 exon 7 is spliced out, resulting in a 1-nt upstream frameshift, which leads to a premature stop codon in exon 8. The intronic sequence may encode a distinct 25-aa fragment of the N-terminal extracellular domain, which could serve as a proposed signal peptide. The continuation of the deduced protein sequence coded by exons 4–13 in SV1 is identical to that of pituitary GHRH-R. SV2 may encode a GHRH-R isoform truncated after the second transmembrane domain. Thus SVs of GHRH-Rs have now been identified in human extrapituitary cells. The findings support the view that distinct receptors are expressed on human cancer cells, which may mediate the antiproliferative effect of GHRH antagonists.
Resumo:
Hepatotropism is a prominent feature of hepatitis B virus (HBV) infection. Cell lines of nonhepatic origin do not independently support HBV replication. Here, we show that the nuclear hormone receptors, hepatocyte nuclear factor 4 and retinoid X receptor α plus peroxisome proliferator-activated receptor α, support HBV replication in nonhepatic cells by controlling pregenomic RNA synthesis, indicating these liver-enriched transcription factors control a unique molecular switch restricting viral tropism. In contrast, hepatocyte nuclear factor 3 antagonizes nuclear hormone receptor-mediated viral replication, demonstrating distinct regulatory roles for these liver-enriched transcription factors.
Modulation of the transcriptional activity of thyroid hormone receptors by the tumor suppressor p53.
Resumo:
Thyroid hormone nuclear receptors (TRs) are ligand-dependent transcriptional factors that regulate growth, differentiation, and development. The molecular mechanisms by which TRs mediate these effects are unclear. One prevailing hypothesis suggests that TRs may cooperate with other transcriptional factors to mediate their biological effects. In this study, we tested this hypothesis by examining whether the activity of TRs is modulated by the tumor suppressor p53. p53 is a nuclear protein that regulates gene expression via sequence-specific DNA binding and/or direct protein-protein interaction. We found that the human TR subtype beta 1 (h-TR beta 1) physically interacted with p53 via its DNA binding domain. As a result of this physical interaction, binding of h-TR beta 1 to its hormone response elements either as homodimer or as a heterodimer with the retinoic X receptor was inhibited by p53 in a concentration-dependent manner. In transfected cells, wild-type p53 repressed the hormone-dependent transcriptional activation of h-TR beta 1. In contrast, mutant p53 either had no effect or activated the transcriptional activity of h-TR beta 1 depending on the type of hormone response elements. These results indicate the gene regulating activity of TRs was modulated by p53, suggesting that the cross talk between these two transcriptional factors may play an important role in the biology of normal and cancer cells.
Resumo:
We describe a dominant-negative approach in vivo to assess the strong, early upregulation of thyroid hormone receptor beta (TR beta) gene in response to thyroid hormone, characteristic of the onset of natural and thyroid hormone-induced amphibian metamorphosis, 3,3',5-Triiodo-thyronine (T3) treatment of organ cultures of premetamorphic Xenopus tadpole tails coinjected in vivo with the wild-type Xenopus TR beta (wt-xTR beta) and three different thyroid responsive element chloramphenicol acetyltransferase (TRE-CAT) reporter constructs, including a direct repeat +4 (DR +4) element in the -200/+87 fragment of the xTR beta promoter, resulted in a 4- to 8-fold enhancement of CAT activity. Two human C-terminal TR beta 1 mutants (delta-hTR beta 1 and Ts-hTR beta 1), an artificial Xenopus C-terminal deletion mutant (mt-xTR beta), and the oncogenic viral homology v-erbA, none of which binds T3, inhibited this T3 response of the endogenous wt-xTR in Xenopus XTC-2 cells cotransfected with the -1600/+87 xTR beta promoter-CAT construct, the potency of the dominant-negative effect of these mutant TRs being a function of the strength of their heterodimerization with Xenopus retinoid X receptor gamma. Coinjection of the dominant-negative Xenopus and human mutant TR beta s into Xenopus tadpole tails totally abolished the T3 responsiveness of the wt-xTR beta with different TREs, including the natural DR +4 TRE of the xTR beta promoter.
Resumo:
In this study we have investigated the role of the N-terminal region of thyroid hormone receptors (TRs) in thyroid hormone (TH)-dependent transactivation of a thymidine kinase promoter containing TH response elements composed either of a direct repeat or an inverted palindrome. Comparison of rat TR beta 1 with TR beta 2 provides an excellent model since they share identical sequences except for their N termini. Our results show that TR beta 2 is an inefficient TH-dependent transcriptional activator. The degree of transactivation corresponds to that observed for the mutant TR delta N beta 1/2, which contains only those sequences common to TR beta 1 and TR beta 2. Thus, TH-dependent activation appears to be associated with two separate domains. The more important region, however, is embedded in the N-terminal domain. Furthermore, the transactivating property of TR alpha 1 was also localized to the N-terminal domain between amino acids 19 and 30. Using a coimmunoprecipitation assay, we show that the differential interaction of the N terminus of TR beta 1 and TR beta 2 with transcription factor IIB correlates with the TR beta 1 activation function. Hence, our results underscore the importance of the N-terminal region of TRs in TH-dependent transactivation and suggest that a transactivating signal is transmitted to the general transcriptional machinery via a direct interaction of the receptor N-terminal region with transcription factor IIB.
Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.
Resumo:
Nuclear hormone receptors are transcription factors that require multiple protein-protein interactions to regulate the expression of their target genes. Using the yeast two-hybrid system, we identified a protein, thyroid hormone receptor uncoupling protein (TRUP), that specifically interacts with a region of the human thyroid hormone receptor (TR) consisting of the hinge region and the N-terminal portion of the ligand binding domain in a hormone-independent manner. Interestingly, TRUP inhibits transactivation by TR and the retinoic acid receptor but has no effect on the estrogen receptor or the retinoid X receptor in mammalian cells. We also demonstrate that TRUP exerts its action on TR and retinoic acid receptor by interfering with their abilities to interact with their DNA. TRUP represents a type of regulatory protein that modulates the transcriptional activity of a subclass of the nuclear hormone receptor superfamily by preventing interaction with their genomic response elements.
Resumo:
In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.
Resumo:
Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or [`]attractors'. We describe the synthesis, in vitro binding and selected in vivo toxicity data for [gamma]-methylene [gamma]-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognized by a single conformation of the EcR binding pocket.