23 resultados para hipertireoidismo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Pediatria - FMB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertrophic cardiomyopathy (HCM) is the most common heart disease in the feline specie, more frequently affecting pure-breed males such as Ragdolls and Maine Coons. HCM can be primary (idiopathic) or secondary, when other diseases such as hyperthyroidism are involved. The disease is characterized by an increase in the diameter and thickness of the left ventricular wall, with consequent diastolic dysfunction. Mitral regurgitation happens due to compromised ventricular filling, leading to an increased left atrium size and consequent cardiogenic pulmonary edema. Along with the progress of modern veterinary medicine, many diseases could be addressed more successfully on small animal internal medicine, such as feline HCM. This article brings a literature review of the feline hypertrophic cardiomyopathy, focusing on its etiology, physiopathology, clinical presentations, diagnostic methods, therapeutics and prognosis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperthyroidism promotes cardiac hypertrophy and the Angiotensin type 1 receptor (AT1R) has been demonstrated to mediate part of this response. Recent studies have uncovered a potentially important role for the microRNAs (miRNAs) in the control of diverse aspects of cardiac function. Then, the objective of the present study was to investigate the action promoted by hyperthyroidism on β-MHC/miR-208b expression and on α-MHC/miR-208a expression, as well as the possible contribution of the AT1R in this event. The findings of this study confirmed that AT1R is a key mediator of the cardiac hypertrophy induced by hyperthyroidism. Additionally, we demonstrated that like β-MHC, miR-208b was down-regulated in the hyperthyroid group. Similarly, like the expression of its host gene, α-MHC, miR-208a expression was up-regulated in response to hyperthyroidism. Finally, our data suggest for the first time that AT1R mediates the hyperthyroidism-induced increase on cardiac miRNA-208a/α-MHC levels, while does not influence on the reduction of miRNA-208b/β-MHC levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.