894 resultados para high-performance liquid chromatography coupled with
Resumo:
The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC—a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices—thus, supporting the PCA approach.
Resumo:
A method was presented for the determination of testosterone, methyltestosterone and progesterone in liquid cosmetics by coupling polymer monolith microextraction (PMME) to high performance liquid chromatography with UV detection. A poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was selected as the extraction medium, which showed high extraction capacity towards these compounds. To achieve optimum extraction performance, several parameters relating to PMME were investigated, including extraction flow rate and pH value, inorganic salt and organic phase concentration of the sample matrix. By simple dilution with phosphate solution and filtering, the sample solution then could be directly injected into the device for extraction. The limits of detection of testosterone, methyltestosterone and progesterone were calculated to be 2, 3, 2, 8 and 4.6 mu g/L. Good linearity was achieved in the range of 10 to 1000 mu g/L with a linear coefficient. r value above 0. 996. Excellent method reproducibility was found by intra- and inter-day precisions, yielding the relative standard deviations of < 7. 7 % and < 7. 5 %, respectively. Recovery for them in the real samples was between 83% and 119%.
Resumo:
Plantaginis Semen is commonly used in traditional medicine to treat edema, hypertension, and diabetes. The commercially available Plantaginis Semen in China mainly comes from three species. To clarify the chemical composition and distinct different species of Plantaginis Semen, we established a metabolite profiling method based on ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique. A total of 108 compounds, including phenylethanoid glycosides, flavonoids, guanidine derivatives, terpenoids, organic acids, and fatty acids, were identified from Plantago asiatica L., P. depressa Willd., and P. major L. Results showed significant differences in chemical components among the three species, particularly flavonoids. This study is the first to provide a comprehensive chemical profile of Plantaginis Semen, which could be involved into the quality control, medication guide, and developing new drug of Plantago seeds.
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A coupled-column liquid chromatographic method for the direct analysis of 14 urinary nucleosides is described. Efficient on-line clean-up and concentration of 14 nucleosides from urine samples were obtained by using a boronic acid-substituted silica column (40 turn x 4.0 mm I.D.) as the first column (Col-1) and a Hypersil ODS2 column (250 mm x 4.6 mm I.D.) as the second column (Col-2). The mobile phases applied consisted of 0.25 mol/L ammonium acetate (pH 8.5) on Col-1, and of 25 mmol/L potassium dihydrogen phosphate (pH 4.5) on Col-2, respectively. Determination of urinary nucleosides was performed on Col-2 column by using a linear gradient elution comprising 25 mmol/L potassium dihydrogen phosphate (pH 4.5) and methanol-water (60:40, v/v) with UV detection at 260 nm. Urinary nucleosides analysis can be carried out by this procedure in 50 min requiring only pH adjustment and the protein precipitation by centrifugation of urine samples. Calibration plots of 14 standard nucleosides showed excellent linearity (r > 0.995) and the limits of detection were at micromolar levels. Both of intra- and inter-day precisions of the method were better than 6.6% for direct determination of 14 nucleosides. The validated method was applied to quantify 14 nucleosides in 20 normal urines to establish reference ranges. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The cyclic voltammetric behavior of acetaldehyde and the derivatized product with 2,4-dinitrophenylhydrazine (DNPHi) has been studied at a glassy carbon electrode. This study was used to optimize the best experimental conditions for its determination by high-performance liquid chromatographic (HPLC) separation coupled with electrochemical detection. The acetaldehyde-2,4-dinitrophenyl.hydrazone (ADNPH) was eluted and separated by a reversed-phase column, C-18, under isocratic conditions with the mobile phase containing a binary mixture of methanol/LiCl(aq) at a concentration of 1.0 x 10(-3) M (80:20 v/v) and a flow rate of 1.0 mL min(-1). The optimum condition for the electrochemical detection of ADNPH was +1.0 V vs. Ag/AgCl as a reference electrode. The proposed method was simple, rapid (analysis time 7 min) and sensitive (detection limit 3.80 mu g L-1) at a signal-to-noise ratio of 3:1. It was also highly selective and reproducible [standard deviation 8.2% +/- 0.36 (n = 5)]. The analytical curve of ADNPH was linear over the range of 3-300 mg L-1 per injection (20 mu L), and the analytical recovery was > 99%.
Resumo:
A new methodology was developed for analysis of aldehydes and ketones in fuel ethanol by high-performance liquid chromatography (HPLC) coupled to electrochemical detection. The electrochemical oxidation of 5-hydroxymetkylfurfural, 2-furfuraldehyde, butyraldehyde, acetone and methyl ethyl ketone derivatized with 2,4-dinitrophenylhydrazine (DNPH) at glassy carbon electrode present a well defined wave at +0.94 V; +0.99 V; +1.29 V; +1.15 V and +1.18 V, respectively which are the basis for its determination on electrochemical defector. The carbonyl compounds derivatized were separated by a reverse-phase column under isocratic conditions with a mobile phase containing a binary mixture of methanol /LiClO4(aq) at a concentration of 1.0 x 10(-3) mol L-1 (80:20 v/v) and a flow-rate of 1.1 mL min(-1). The optimum potential for the electrochemical detection of aldehydes-DNPH and ketones-DNPH was +1.0 V vs. Ag/AgCl. The analytical curve of aldehydes-DNPH and ketones-DNPH presented linearity over the range 5.0 to 400.0 ng mL(-1), with detection limits of 1.7 to 2.0 ng mL(-1) and quantification limits from 5.0 to 6.2 ng mL(-1), using injection volume of 20 mu L. The proposed methodology was simple, low time-consuming (15 min/analysis) and presented analytical recovery higher than 95%.
Resumo:
A glassy carbon electrode chemically modified with nickel nanoparticles coupled with reversed-phase chromatography with pulsed amperometric detection was used for the quantitative analysis of furanic aldehydes in a real sample of sugarcane bagasse hydrolysate. Chromatographic separation was carried out in isocratic conditions (acetonitrile/water, 1:9) with a flow rate of 1.0 mL/min, a detection potential of -50 mV vs. Pd, and the process was completed within 4 min. The analytical curves presented limits of detection of 4.0 × 10(-7) mol/L and 4.3 × 10(-7) mol/L, limits of quantification of 1.3 × 10(-6) and 1.4 × 10(-6) mol/L, amperometric sensitivities of 2.2 × 10(6) nA mol/L and 2.7 × 10(6) nA mol/L for furfural and 5-hydroxymethylfurfural, respectively. The values obtained in this sample by the standard addition method were 1.54 ± 0.02 g/kg for 5-hydroxymethylfurfural and 11.5 ± 0.2 g/kg for furfural. The results demonstrate that this new proposed method can be used for the quick detection of furanic aldehydes without the interference of other electroactive species, besides having other remarkable merits that include excellent peak resolution, analytical repeatability, sensitivity, and accuracy.
Resumo:
Flos Chrysanthemum is a generic name for a particular group of edible plants, which also have medicinal properties. There are, in fact, twenty to thirty different cultivars, which are commonly used in beverages and for medicinal purposes. In this work, four Flos Chrysanthemum cultivars, Hangju, Taiju, Gongju, and Boju, were collected and chromatographic fingerprints were used to distinguish and assess these cultivars for quality control purposes. Chromatography fingerprints contain chemical information but also often have baseline drifts and peak shifts, which complicate data processing, and adaptive iteratively reweighted, penalized least squares, and correlation optimized warping were applied to correct the fingerprint peaks. The adjusted data were submitted to unsupervised and supervised pattern recognition methods. Principal component analysis was used to qualitatively differentiate the Flos Chrysanthemum cultivars. Partial least squares, continuum power regression, and K-nearest neighbors were used to predict the unknown samples. Finally, the elliptic joint confidence region method was used to evaluate the prediction ability of these models. The partial least squares and continuum power regression methods were shown to best represent the experimental results.
Resumo:
The isoflavonoids in Radix astragali were determined and identified by HPLC-photodiode array detection-MS after extraction employing matrix solid-phase dispersion (MSPD). As a new sample preparation method for R. astragali, the MSPD procedure was optimized, validated and compared with conventional methods including ultrasonic and Soxhlet extraction. The amounts of two major components in this herb, formononetin (6) and ononin (2), were determined based on their authentic standards. Four major isoflavonoids, formononetin (6), ononin (2), calycosin (5) and its glycoside (1), and three minor isoflavonoids, (6aR,11aR)-3-hydroxy-9, 10-dimethoxypterocarpan (7), its glycoside (3), and (3R)-7,2'-dihydroxy-3',4'-dimethoxyisoflavone-7-O-beta-D-glycoside (4), were identified based on their characteristic two-band UV spectra and [M + H](+), [aglycone + H](+) and [A1 + H](+) ions, etc. The combined MSPD and HPLC-DAD-MS method was suitable for quantitative and qualitative determination of the isoflavonoids in R. astragali. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with fluorescence detection has been developed. 9-(2-Hydroxyethyl)acridone reacts with coupling agent N,N-carbonyldiimidazole at ambient temperature to form activated amide intermediate 9-(2-acridone)oxyethylcarbonylimidazole (AOCD). The amide intermediate (AOCD) preferably reacts with amino compounds under mild reactions in the presence of 4-(dimethylamino)pyridine (base catalyst) in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum lambda(ex) 404 mn and an emission maximum at lambda(em) 440 nm. The labeled derivatives exhibit high stability under reversed-phase conditions. The fluorescence intensities of derivatives in various solvents or at different temperatures were investigated. The method, in conjunction with a gradient elution, offers a baseline resolution of the common amine derivatives on a reversed-phase C-18 column. The LC separation for the derivatized amines shows good reproducibility with acetonitrile-water including 2.5% DMF as mobile phase. The relative standard deviations (n = 6) for each amine derivative are <4.5%. The detection limits (at a signal-to-noise ratio of 3) per injection were 0.16-12.8 ng/mL. Further research for the field of application, based on the AOCD amide intermediate as derivatization reagent, for the determination of free amines in real water samples is achieved.
Resumo:
2-(9-Carbazole)-ethyl-chloroformate (CEOC), a novel pre-column fluorescence derivatization reagent, has been developed for the analysis of aromatic amines. Taking five monocyclic aromatic amines (o-toluidine, aniline, 3,4-dimethylaniline, N-ethyl-p-toluidine, and p-phenylenediamine) as testing compounds, derivatization conditions such as pH of borate buffer, reaction time and fluorescent tagging reagent concentration have been investigated. By a one-step procedure, CEOC reacts readily with the aromatic amines to form stable derivatives with excitation and emission wavelengths, respectively, at 293 and 360 nm. This derivatization reaction could be finished within 20 min even at room temperature. The peak shapes of the derivatized aromatic amines can be improved greatly without any addition of competition amines into the mobile phase. Furthermore, this method can offer excellent quantitative precision with high tolerance of the matrix of samples. (C) 2003 Elsevier B.V. All rights reserved.