482 resultados para heterozygosity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to convert existing faba bean (Vicia faba L.) single nucleotide polymorphism (SNP) markers from cleaved amplification polymorphic sequences and SNaPshot® formats, which are expensive and time-consuming, to the more convenient KBiosciences competitive allele‐specific PCR (KASP) assay format. Out of 80 assays designed, 75 were validated, though a core set of 67 of the most robust markers is recommended for further use. The 67 best KASP SNP assays were used across two generations of single seed descent to detect unintended outcrossing and to track and quantify loss of heterozygosity, a capability that will significantly increase the efficiency and performance of pure line production and maintenance. This same set of assays was also used to examine genetic relationships between the 67 members of the partly inbred panel, and should prove useful for line identification and diversity studies in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uterine leiomyomas are extremely common, benign, smooth muscle tumors that represent a significant public health problem. Although there have been few molecular studies of uterine leiomyomas, most of them have reported a very low frequency of loss of heterozygosity (LOH) in different regions of the genome. The detection of LOH has been used to identify genomic regions that harbor tumor suppressor genes and to characterize different tumor types. We have used a set of 15 microsatellite polymorphism markers to examine the frequency of allele loss in a panel of 64 human uterine leiomyomas matched to normal DNAs. The markers were chosen from regions involved in losses identified by comparative genomic hybridization in a subset of uterine leiomyomas described in a previous report. DNA from tumors and normal tissue was amplified by the polymerase chain reaction and subsequently analyzed using an ABI Prism 377 DNA automated sequencer. The frequency of LOH observed was low, except for the markers D15S87 (15q26.3), D7S493 (7p15.3), and D7S517 (7p22.2). No changes in microsatellite size were detected in our samples. These results provide useful clues for identifying putative tumor suppressor genes associated with a subset of uterine leiomyomas. (C) 2004 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. IGF2 and H19 are reciprocal imprinted genes with paternal and maternal monoallelic expression, respectively. This is interesting, because IGF2 is known as a growth factor, and H19 encodes a RNA with putative tumor suppressor action. Furthermore, IGF2 and H19 are linked genes located on chromosome 11p15.5, a common site of loss of heterozygosity in human cancers.Methods. We performed an allelic-typing assay using a PCR-RFLP-based method for identification of heterozygous Informative cases in head and neck squamous cell carcinomas. Tumoral total RNA was extracted from each of the heterozygotes and further studied by RT-PCR analysis.Results. We detected the expression of the IGF2 gene in 10 of 10 informative cases. Two cases exhibited LOI of the IGF2 gene as evidenced by biallelic expression, and in another case, LOH was coupled with monoallelic expression of this growth factor. LOI for the H19 gene was observed in 1 of 14 informative samples analyzed. In this case, we also detected parallel mono-allelic expression of the IGF2 gene. Down-regulation of the H19 gene was observed in 10 of 14 cases.Conclusion. These findings support the hypothesis that H19 may be a tumor suppressor gene involved In head and neck carcinogenesis. Furthermore, our data showed that genetic and epigenetic chances at 11p15.5 could lead to abnormal expression of imprinted genes in HNSCC. (C) 2001 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Frequent loss of heterozygosity (LOH) has been reported in many types of cancer, including head and neck carcinomas. Somatic deletions involving specific chromosomal regions are strongly associated with inactivation of the allele of a tumor suppressor gene located within the deleted region. In most studies concerning LOH in head and neck squamous cell carcinomas (HNSCC) the different anatomical sites are not distinguished. The behavior of tumors arising at various sites differs significantly, however, suggesting different intrinsic tumor properties. In this study we compared the LOH on 22q and its relationship to clinicopathological parameters at the three major sites of HNSCC: oral cavity, larynx and pharynx. Material/Methods: LOH and microsatellite instability (MSI) were studied using seven polymorphic microsatellite markers mapped to the 22q11-q13.3 region in 37 oral, 32 laryngeal, and 31 pharyngeal carcinomas. Results: Two separate regions of LOH were identified in the laryngeal (22q11.2-12.1) and oral cavity (22q13.1-13.31) tumors. When the different anatomical sites were compared, a statistically significant difference was found between the presence of LOH at D22S421 (p<0.001), D22S315 (p=0.014) and D22S929 (p=0.026) in the laryngeal tumors. Conclusions: These data suggest that distinct regions on 22q are involved in LOH in oral cavity and laryngeal tumorigenesis but do not support a similar association between the development of pharyngeal tumors and genes located on 22q. These findings implicate the presence of different tumor suppressor genes mapping to distinct regions on chromosome 22q in oral and laryngeal carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: This study was conducted to elucidate the impact of loss of heterozygosity (LOH) for chromosomes 1p36 and 19q13 on the overall survival of patients with diffusely infiltrating WHO grade 2 gliomas treated without chemotherapy. PATIENTS AND METHODS: We assessed the LOH status of tumors from patients harboring WHO grade 2 gliomas diagnosed between 1991 and 2000. Patients were either followed after initial biopsy or treated by surgery and/or radiation therapy (RT). Overall survival, time to malignant transformation, and progression-free survival were last updated as of March 2005. RESULTS: Of a total of 79 patients, LOH 1p36 and LOH 19q13 could be assessed in 67 and 66 patients, respectively. The median follow-up after diagnosis was 6 years. Loss of either 1p or 19q, in particular codeletion(s) at both loci, was found to positively impact on both overall survival (log-rank P < .01), progression-free survival, and survival without malignant transformation (P < .05). Tumor volume (P < .0001), neurologic deficits at diagnosis (P < .01), involvement of more than one lobe (P < .01), and absence of an oligodendroglial component (P < .05) were also predictors of shorter overall survival. The extent of surgery was similar in patients with or without LOH 1p and/or 19q; RT was more frequently resorted to for patients without than for patients with LOH 1p/19q (30% v 60%). CONCLUSION: The presence of LOH on either 1p36 or 19q13, and in particular codeletion of both loci is a strong, nontreatment-related, prognostic factor for overall survival in patients with diffusely infiltrating WHO grade 2 gliomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The age distribution and incidence of loss of heterozygosity (LOH) of 1p and 19q was analyzed in 85 oligodendroglial tumors WHO II and III. The peak of tumor manifestation was in the age group of 35 to 55 years. There was no association between age at diagnosis and LOH incidence. We conclude that the prognostic effect of age on survival is not mediated by LOH 1p/19q.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Neurofibromatosis type 1 (NF1) is a pheochromocytoma-associated syndrome. Because of the low prevalence of pheochromocytoma in NF1, we ascertained subjects by pheochromocytoma that also had NF1 in the hope of describing the germline NF1 mutational spectra of NF1-related pheochromocytoma. MATERIALS AND METHODS: An international registry for NF1-pheochromocytomas was established. Mutation scanning was performed using denaturing HPLC for intragenic variation and quantitative PCR for large deletions. Loss-of-heterozygosity analysis using markers in and around NF1 was performed. RESULTS: There were 37 eligible subjects (ages 14-70 yr). Of 21 patients with corresponding tumor available, 67% showed somatic loss of the nonmutated allele at the NF1 locus vs. 0 of 12 sporadic tumors (P = 0.0002). Overall, 86% of the 37 patients had exonic or splice site mutations, 14% large deletions or duplications; 79% of the mutations are novel. The cysteine-serine rich domain (CSR) was affected in 35% but the RAS GTPase activating protein domain (RGD) in only 13%. There did not appear to be an association between any clinical features, particularly pheochromocytoma presentation and severity, and NF1 mutation genotype. CONCLUSIONS: The germline NF1 mutational spectra comprise intragenic mutations and deletions in individuals with pheochromocytoma and NF1. NF1 mutations tended to cluster in the CSR over the RAS-GAP domain, suggesting that CSR plays a more prominent role in individuals with NF1-pheochromocytoma than in NF1 individuals without this tumor. Loss-of-heterozygosity of NF1 markers in NF1-related pheochromocytoma was significantly more frequent than in sporadic pheochromocytoma, providing further molecular evidence that pheochromocytoma is a true component of NF1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. METHODS: Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. RESULTS: 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. CONCLUSIONS: Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Functional characterization of mutations involving the SCN5A-encoded cardiac sodium channel has established the pathogenic mechanisms for type 3 long QT syndrome and type 1 Brugada syndrome and has provided key insights into the physiological importance of essential structure-function domains. OBJECTIVE This study sought to present the clinical and biophysical phenotypes discerned from compound heterozygosity mutations in SCN5A on different alleles in a toddler diagnosed with QT prolongation and fever-induced ventricular arrhythmias. METHODS A 22-month-old boy presented emergently with fever and refractory ventricular tachycardia. Despite restoration of sinus rhythm, the infant sustained profound neurological injury and died. Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, comprehensive open-reading frame/splice mutational analysis of the 12 known long QT syndrome susceptibility genes was performed. RESULTS The infant had 2 SCN5A mutations: a maternally inherited N-terminal frame shift/deletion (R34fs/60) and a paternally inherited missense mutation, R1195H. The mutations were engineered by site-directed mutagenesis and heterologously expressed transiently in HEK293 cells. As expected, the frame-shifted and prematurely truncated peptide, SCN5A-R34fs/60, showed no current. SCN5A-R1195H had normal peak and late current but abnormal voltage-dependent gating parameters. Surprisingly, co-expression of SCN5A-R34fs/60 with SCN5A-R1195H elicited a significant increase in late sodium current, whereas co-expression of SCN5A-WT with SCN5A-R34fs/60 did not. CONCLUSIONS A severe clinical phenotype characterized by fever-induced monomorphic ventricular tachycardia and QT interval prolongation emerged in a toddler with compound heterozygosity involving SCN5A: R34fs/60, and R1195H. Unexpectedly, the 94-amino-acid fusion peptide derived from the R34fs/60 mutation accentuated the late sodium current of R1195H-containing Na(V)1.5 channels in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of chromosomal double-strand breaks (DSBs) is necessary for genomic integrity in all organisms. Genetic consequences of misrepair include chromosomal loss, deletion, and duplication resulting in loss of heterozygosity (LOH), a common finding in human solid tumors. Although work with radiation-sensitive cell lines suggests that mammalian cells primarily rejoin DSBs by nonhomologous mechanisms, alternative mechanisms that are implicated in chromosomal LOH, such as allelic recombination, may also occur. We have examined chromosomal DSB repair between homologs in a gene targeted mammalian cell line at the retinoblastoma (Rb) locus. We have found that allelic recombinational repair occurs in mammalian cells and is increased at least two orders of magnitude by the induction of a chromosomal DSB. One consequence of allelic recombination is LOH at the Rb locus. Some of the repair events also resulted in other types of genetic instability, including deletions and duplications. We speculate that mammalian cells may have developed efficient nonhomologous DSB repair processes to bypass allelic recombination and the potential for reduction to homozygosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic events leading to the loss of heterozygosity (LOH) have been shown to play a crucial role in the development of cancer. However, LOH events do not occur only in genetically unstable cancer cells but also have been detected in normal somatic cells of mouse and man. Mice, in which one of the alleles for adenine phosphoribosyltransferase (Aprt) has been disrupted by gene targeting, were used to investigate the potency of carcinogens to induce LOH in vivo. After 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) exposure, a 3-fold stronger mutagenic response was detected at the autosomal Aprt gene than at the X chromosomal hypoxantine-guanine phosphoribosyltransferase (Hprt) gene in splenic T-lymphocytes. Allele-specific PCR analysis showed that the normal, nontargeted Aprt allele was lost in 70% of the DMBA-induced Aprt mutants. Fluorescence in situ hybridization analysis demonstrated that the targeted allele had become duplicated in almost all DMBA-induced mutants that displayed LOH at Aprt. These results indicate that the main mechanisms by which DMBA caused LOH were mitotic recombination or chromosome loss and duplication but not deletion. However, after treatment with the alkylating agent N-ethyl-N-nitrosourea, Aprt had a similar mutagenic response to Hprt while the majority (90%) of N-ethyl-N-nitrosourea-induced Aprt mutants had retained both alleles. Unexpectedly, irradiation with x-rays, which induce primarily large deletions, resulted in a significant increase of the mutant frequency at Hprt but not at Aprt. This in vivo study clearly indicates that, in normal somatic cells, carcinogen exposure can result in the induction of LOH events that are compatible with cell survival and may represent an initiating event in tumorigenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies of Min/+ (multiple intestinal neoplasia) mice on a sensitive genetic background, C57BL/6 (B6), showed that adenomas have lost heterozygosity for the germ-line ApcMin mutation in the Apc (adenomatous polyposis coli) gene. We now report that on a strongly resistant genetic background, AKR/J (AKR), Min-induced adenoma multiplicity is reduced by about two orders of magnitude compared with that observed on the B6 background. Somatic treatment with a strong mutagen increases tumor number in AKR Min/+ mice in an age-dependent manner, similar to results previously reported for B6 Min/+ mice. Immunohistochemical analyses indicate that Apc expression is suppressed in all intestinal tumors from both untreated and treated AKR Min/+ mice. However, the mechanism of Apc inactivation in AKR Min/+ mice often differs from that observed for B6 Min/+ mice. Although loss of heterozygosity is observed in some tumors, a significant percentage of tumors showed neither loss of heterozygosity nor Apc truncation mutations. These results extend our understanding of the effects of genetic background on Min-induced tumorigenesis in several ways. First, the AKR strain carries modifiers of Min in addition to Mom1. This combination of AKR modifiers can almost completely suppress spontaneous intestinal tumorigenesis associated with the Min mutation. Second, even on such a highly resistant genetic background, tumor formation continues to involve an absence of Apc function. The means by which Apc function is inactivated is affected by genetic background. Possible scenarios are discussed.