384 resultados para herbaceous peony
Flavonoid Composition and Antioxidant Activity of Tree Peony (Paeonia Section Moutan) Yellow Flowers
Resumo:
The Qinghai-Tibet Plateau is characterized by extremely high radiation, which may induce down-regulation of photosynthesis in plants living in this alpine ecosystem. To clarify whether photoinhibition occurs in the alpine environment and to discern its underlying mechanisms, we examined photosynthetic gas exchange and fluorescence emission in response to the changes in photosynthetic photon flux density (PPFD) and leaf temperature under natural regimes for two herbaceous species: prostrate Saussurea superba and erect-leaved Saussurea katochaete from altitude 3250 m on the Qinghai-Tibet Plateau. S. superba intercepted a higher maximum PPFD and experienced much higher leaf temperature than the erect-leaved S. katochaete. S. superba exhibited a much higher light saturation point for photosynthesis than S. katochaete. Under controlled conditions, the former species had higher CO2 uptake rates and neither species showed obvious photosynthetic down-regulation at high PPFD. Under natural environmental conditions, however, apparent photoinhibition, indicated by reduced electron transport rate (ETR), was evident at high PPFD for both species. After a night frost, the photochemistry of S. katochaete was depressed markedly in the early morning and recovered by mid-day. After a frost-free night, it was high in the morning and low at noon due to high radiation. S. superba did not respond to the night frost in terms of daytime photochemical pattern. In both species, photochemical depression was aggravated by high leaf temperature and the erect species was more sensitive to high temperature. This study suggests that the high radiation on the Qinghai-Tibet Plateau is likely to induce rapidly reversible photoinhibition, which is related closely to plant architecture. Photochemistry in the prostrate species seems able to tolerate higher PPFD, without obvious suppression, than the erect species. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Previous phylogeographical and palaeontological studies on the biota of northern North America have revealed a complex scenario of glacial survival in multiple refugia and differing patterns of postglacial recolonization. Many putative refugial regions have been proposed both north and south of the ice sheets for species during the Last Glacial Maximum, but the locations of many of these refugia remain a topic of great debate. In this study, we used a phylogeographical approach to elucidate the refugial and recolonization history of the herbaceous plant species Orthilia secunda in North America, which is found in disjunct areas in the west and east of the continent, most of which were either glaciated or lay close to the limits of the ice sheets. Analysis of 596-bp of the chloroplast trnS-trnG intergenic spacer and five microsatellite loci in 84 populations spanning the species' range in North America suggests that O.secunda persisted through the Last Glacial Maximum (LGM) in western refugia, even though palaeodistribution modelling indicated a suitable climate envelope across the entire south of the continent. The present distribution of the species has resulted from recolonization from refugia north and south of the ice sheets, most likely in Beringia or coastal regions of Alaska and British Columbia, the Washington/Oregon region in the northwest USA, and possibly from the region associated with the putative 'ice-free corridor' between the Laurentide and Cordilleran ice sheets. Our findings also highlight the importance of the Pacific Northwest as an important centre of intraspecific genetic diversity, owing to a combination of refugial persistence in the area and recolonization from other refugia.
Resumo:
Aim We carried out a phylogeographic study across the range of the herbaceous plant species Monotropa hypopitys L. in North America to determine whether its current disjunct distribution is due to recolonization from separate eastern and western refugia after the Last Glacial Maximum (LGM). Location North America: Pacific Northwest and north-eastern USA/south-eastern Canada. Methods Palaeodistribution modelling was carried out to determine suitable climatic regions for M. hypopitys at the LGM. We analysed between 155 and 176 individuals from 39 locations spanning the species' entire range in North America. Sequence data were obtained for the chloroplast rps2 gene (n=168) and for the nuclear ITS region (n=158). Individuals were also genotyped for eight microsatellite loci (n=176). Interpolation of diversity values was used to visualize the range-wide distribution of genetic diversity for each of the three marker classes. Minimum spanning networks were constructed showing the relationships between the rps2 and ITS haplotypes, and the geographical distributions of these haplotypes were plotted. The numbers of genetic clusters based on the microsatellite data were estimated using Bayesian clustering approaches. Results The palaeodistribution modelling indicated suitable climate envelopes for M. hypopitys at the LGM in both the Pacific Northwest and south-eastern USA. High levels of genetic diversity and endemic haplotypes were found in Oregon, the Alexander Archipelago, Wisconsin, and in the south-eastern part of the species' distribution range. Main conclusions Our results suggest a complex recolonization history for M. hypopitys in North America, involving persistence in separate eastern and western refugia. A generally high degree of congruence between the different marker classes analysed indicated the presence of multiple refugia, with at least two refugia in each area. In the west, putative refugia were identified in Oregon and the Alexander Archipelago, whereas eastern refugia may have been located in the southern part of the species' current distribution, as well as in the 'Driftless Area'. These findings are in contrast to a previous study on the related species Orthilia secunda, which has a similar disjunct distribution to M. hypopitys, but which appears to have recolonized solely from western refugia. © 2011 Blackwell Publishing Ltd.
Resumo:
Little is known about the residual effects of crop residue (CR) and phosphorus (P) application on the fallow vegetation following repeated cultivation of pearl millet [Pennisetum glaucum (L.) R. Br.] in the Sahel. The objective of this study, therefore, was (i) to measure residual effects of CR, mulched at annual rates of 0, 500, 1000 and 2000 kg CR ha^-1, broadcast P at 0 and 13 kg P ha^-1 and P placement at 0, 1, 3, 5 and 7 kg P ha^-1 on the herbaceous dry matter (HDM) 2 years after the end of the experiment and (ii) to test a remote sensing method for the quantitative estimation of HDM. Compared with unmulched plots, a doubling of HDM was measured in plots that had received at least 500 kg CR ha^-1. Previous broadcast P application led to HDM increases of 14% compared with unfertilised control plots, whereas no residual effects of P placement were detected. Crop residue and P treatments caused significant shifts in flora composition. Digital analysis of colour photographs taken of the fallow vegetation and the bare soil revealed that the number of normalised green band pixels averaged per plot was highly correlated with HDM (r=0.86) and that red band pixels were related to differences in soil surface crusting. Given the traditional use of fallow vegetation as fodder, the results strongly suggest that for the integrated farming systems of the West African Sahel, residual effects of soil amendments on the fallow vegetation should be included in any comprehensive analysis of treatment effects on the agro-pastoral system.
Resumo:
The aim of this study was to investigate the capacity of three perennial legume species to access sources of varyingly soluble phosphorus (P) and their associated morphological and physiological adaptations. Two Australian native legumes with pasture potential (Cullen australasicum and Kennedia prostrata) and Medicago sativa cv. SARDI 10 were grown in sand under two P levels (6 and 40 µg P g−1) supplied as Ca(H2PO4)2·H2O (Ca-P, highly soluble, used in many fertilizers) or as one of three sparingly soluble forms: Ca10(OH)2(PO4)6 (apatite-P, found in relatively young soils; major constituent of rock phosphate), C6H6O24P6Na12 (inositol-P, the most common form of organic P in soil) and FePO4 (Fe-P, a poorly-available inorganic source of P). All species grew well with soluble P. When 6 µg P g−1 was supplied as sparingly soluble P, plant dry weight (DW) and P uptake were very low for C. australasicum and M. sativa (0.1–0.4 g DW) with the exception of M. sativa supplied with apatite-P (1.5 g). In contrast, K. prostrata grew well with inositol-P (1.0 g) and Fe-P (0.7 g), and even better with apatite-P (1.7 g), similar to that with Ca-P (1.9 g). Phosphorus uptake at 6 µg P g−1 was highly correlated with total root length, total rhizosphere carboxylate content and total rhizosphere acid phosphatase (EC 3.1.3.2) activity. These findings provide strong indications that there are opportunities to utilize local Australian legumes in low P pasture systems to access sparingly soluble soil P and increase perennial legume productivity, diversity and sustainability.
Resumo:
Background and aims Medicago sativa L. is widely grown in southern Australia, but is poorly adapted to dry, hot summers. This study aimed to identify perennial herbaceous legumes with greater resistance to drought stress and explore their adaptive strategies. Methods Ten herbaceous perennial legume species/accessions were grown in deep pots in a sandy, low-phosphorus field soil in a glasshouse. Drought stress was imposed by ceasing to water. A companion M. sativa plant in each pot minimised differences in leaf area and water consumption among species. Plants were harvested when stomatal conductance of stressed plants decreased to around 10% of well watered plants. Results A range of responses to drought stress were identified, including: reduced shoot growth; leaf curling; thicker pubescence on leaves and stems; an increased root:shoot ratio; an increase, decrease or no change in root distribution with depth; reductions in specific leaf area or leaf water potential; and osmotic adjustment. The suite of changes differed substantially among species and, less so, among accessions. Conclusions The inter- and intra-specific variability of responses to drought-stress in the plants examined suggests a wide range of strategies are available in perennial legumes to cope with drying conditions, and these could be harnessed in breeding/selection programs.
Resumo:
Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.
Resumo:
Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.
Resumo:
The Japanese apricot (Prunus mume Sieb. et Zucc.) is a fruit tree of the Rosaceae family which produces very acid and bitter fruits, highly appreciated by Orientals. In Brazil, this species has been studied as a rootstock for peach and nectarine trees, its main advantage being the reduction in plant vigour, which can favour the production of compact trees and orchard cultural treatments. This study was conducted in the Vegetable Production Department of FCAV/UNESP, Jaboticabal Campus, São Paulo State, Brazil, and the objective was to examine the effect of wounding the herbaceous cutting bases on the rooting of four Japanese apricot clones. The clones were obtained from plants under cultivation in the Instituto Agronomico de Campinas, Brazil, and were identified as Clones 02, 05, 10 and 15. The stock plants, obtained through herbaceous cuttings, were maintained under lath house conditions (50% of natural light). Cuttings 12 cm long with 3 to 5 leaves were collected from these clones and prepared. The experiment was carried out in a completely randomised design with 4 repetitions of 20 cuttings per replication, in a factorial 4 x 2 design, the clone factor having 4 levels (Clones 02, 05, 10 and 15) and the wounding factor at 2 levels of incisions into the cutting base (with and without). All the cuttings were treated with 2000 mg.L-1 of IBA for five seconds. Differences between the clones were observed concerning the rooting percentage, dead cuttings, number and length of roots. The incision (wound) at the base of the herbaceous cuttings of the Japanese apricot increased the number of roots and improved the distribution of these in the damaged tissue but the results were not considered sufficiently beneficial to make the treatment worthwhile.
Resumo:
One of the major problems in landscaping in tropics is weed management. The herbaceous ornamental plant, Tagetes erecta L. (Asteraceae), is very popular for its beautiful flowers which can be used in landscape and also as cut flowers. The increase use of this plant and lack of selective herbicides led to the objective of this study to evaluate the herbicide metribuzin selectivity for this ornamental plant. The experimental design was completely randomized using four treatments (herbicide metribuzin doses: 0, 0.5, 1.0 and 1.5 L ha-1, equivalent to 0, 240, 480 and 720 g ha-1) and five replicates. The herbicide was applied over the seedling of T. erecta as pre-emergence of the weed seeds. Evaluations were performed at 7, 14, 21 and 28 days after application (DAA) by visual analysis of the toxicity symptoms over the ornamental, using the European Weed Research Council (EWRC) scale (1 to 9), where 1 is the total absence of symptoms and 9 to death plants. Polynomial regression statistical analysis was used. It was verified that, from the dose of 1.0 L ha-1, T. erecta plants died by 14 DAA, which the most of them had presented a very strong toxicity symptom; for the 0.5 L ha-1 treatment the plants had survived until 28 DAA. However, most of them already exhibited the high toxicity level, dying at 35 DAA. Thus, metribuzin was not suitable for T. erecta even at the lowest rate tested in this study.