982 resultados para heat pump dryer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Space heating accounts for a large portion of the world's carbon dioxide emissions. Ground Source Heat Pumps (GSHPs) are a technology which can reduce carbon emissions from heating and cooling. GSHP system performance is however highly sensitive to deviation from design values of the actual annual energy extraction/rejection rates from/to the ground. In order to prevent failure and/or performance deterioration of GSHP systems it is possible to incorporate a safety factor in the design of the GSHP by over-sizing the ground heat exchanger (GHE). A methodology to evaluate the financial risk involved in over-sizing the GHE is proposed is this paper. A probability based approach is used to evaluate the economic feasibility of a hypothetical full-size GSHP system as compared to four alternative Heating Ventilation and Air Conditioning (HVAC) system configurations. The model of the GSHP system is developed in the TRNSYS energy simulation platform and calibrated with data from an actual hybrid GSHP system installed in the Department of Earth Science, University of Oxford, UK. Results of the analysis show that potential savings from a full-size GSHP system largely depend on projected HVAC system efficiencies and gas and electricity prices. Results of the risk analysis also suggest that a full-size GSHP with auxiliary back up is potentially the most economical system configuration. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat pumps can provide domestic heating at a cost that is competitive with oil heating in particular. If the electricity supply contains a significant amount of renewable generation, a move from fossil fuel heating to heat pumps can reduce greenhouse gas emissions. The inherent thermal storage of heat pump installations can also provide the electricity supplier with valuable flexibility. The increase in heat pump installations in the UK and Europe in the last few years poses a challenge for low-voltage networks, due to the use of induction motors to drive the pump compressors. The induction motor load tends to depress voltage, especially on starting. The paper includes experimental results, dynamic load modelling, comparison of experimental results and simulation results for various levels of heat pump deployment. The simulations are based on a generic test network designed to capture the main characteristics of UK distribution system practice. The simulations employ DIgSlILENT to facilitate dynamic simulations that focus on starting current, voltage variations, active power, reactive power and switching transients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meeting European emissions targets is reliant on innovative renewable technologies, particularly ‘renewable heat’ from heat pumps. Heat pump performance is driven by Carnot efficiency and optimum performance requires the lowest possible space heating flow temperatures leading to greater sensitivity to poor design, installation and operation. Does sufficient training and installer capacity exist for this technology? This paper situates the results of heat pump field trial performance in a socio-technical context, identifying how far installer competence requirements are met within the current vocational education and training (VET) system and considers possible futures. Few UK installers have formal heat pump qualifications at National Vocational Qualification (NVQ) level 3 and heat pump VET is generally through short-course provision where the structure of training is largely unregulated with no strict adherence to a common syllabus or a detailed training centre specification. Prerequisites for short-course trainees, specifically the demand for heating system knowledge based on metric design criteria, is limited and proof of ‘experience’ is an accepted alternative to formal educational qualifications. The lack of broader educational content and deficiencies in engineering knowledge will have profound negative impacts on both the performance and market acceptance of heat pumps. Possible futures to address this problem are identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the findings of applying a Discrete Demand Side Control (DDSC) approach to the space heating of two case study buildings. High and low tolerance scenarios are implemented on the space heating controller to assess the impact of DDSC upon buildings with different thermal capacitances, light-weight and heavy-weight construction. Space heating is provided by an electric heat pump powered from a wind turbine, with a back-up electrical network connection in the event of insufficient wind being available when a demand occurs. Findings highlight that thermal comfort is maintained within an acceptable range while the DDSC controller maintains the demand/supply balance. Whilst it is noted that energy demand increases slightly, as this is mostly supplied from the wind turbine, this is of little significance and hence a reduction in operating costs and carbon emissions is still attained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is currently an increased interest of Government and Industry in the UK, as well as at the European Community level and International Agencies (i.e. Department of Energy, American International Energy Agency), to improve the performance and uptake of Ground Coupled Heat Pumps (GCHP), in order to meet the 2020 renewable energy target. A sound knowledge base is required to help inform the Government Agencies and advisory bodies; detailed site studies providing reliable data for model verification have an important role to play in this. In this study we summarise the effect of heat extraction by a horizontal ground heat exchanger (installed at 1 m depth) on the soil physical environment (between 0 and 1 m depth) for a site in the south of the UK. Our results show that the slinky influences the surrounding soil by significantly decreasing soil temperatures. Furthermore, soil moisture contents were lower for the GCHP soil profile, most likely due to temperature-gradient related soil moisture migration effects and a decreased hydraulic conductivity, the latter as a result of increased viscosity (caused by the lower temperatures for the GCHP soil profile). The effects also caused considerable differences in soil thermal properties. This is the first detailed mechanistic study conducted in the UK with the aim to understand the interactions between the soil, horizontal heat exchangers and the aboveground environment. An increased understanding of these interactions will help to achieve an optimum and sustainable use of the soil heat resources in the future. The results of this study will help to calibrate and verify a simulation model that will provide UK-wide recommendations to improve future GCHP uptake and performance, while safeguarding the soil physical resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common approaches to the simulation of borehole heat exchangers (BHEs) assume heat transfer in circulating fluid and grout to be in a quasi-steady state and ignore fluctuations in fluid temperature due to transport of the fluid around the loop. However, in domestic ground source heat pump (GSHP) systems, the heat pump and circulating pumps switch on and off during a given hour; therefore, the effect of the thermal mass of the circulating fluid and the dynamics of fluid transport through the loop has important implications for system design. This may also be important in commercial systems that are used intermittently. This article presents transient simulation of a domestic GSHP system with a single BHE using a dynamic three-dimensional (3D) numerical BHE model. The results show that delayed response associated with the transit of fluid along the pipe loop is of some significance in moderating swings in temperature during heat pump operation. In addition, when 3D effects are considered, a lower heat transfer rate is predicted during steady operations. These effects could be important when considering heat exchanger design and system control. The results will be used to develop refined two-dimensional models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review investigates the performance of photovoltaic and solar-assisted ground-source heat pumps in which solar heat is transferred to the ground to improve the coefficient of performance. A number of studies indicate that, for systems with adequately sized ground heat exchangers, the effect on system efficiency is small: about 1% improvement if the heat source is photovoltaic, a 1–2% decline if the source is solar thermal. With possible exceptions for systems in which the ground heat exchanger is undersized, or natural recharge from ground water is insufficient, solar thermal energy is better used for domestic hot water than to recharge ground heat. This appears particularly true outside the heating season, as although much of the heat extracted from the ground can be replaced, it seems to have little effect on the coefficient of performance. Any savings in electrical consumption that do result from an improved coefficient can easily be outweighed by an inefficient control system for the circulation pumps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ground source heat pump assisted by an array of photovoltaic (PV)-thermal modules was studied in this work. Extracting heat from an array of PV modules should improve the performance of both the PV cells and the heat pump. A series of computer simulations compare the performance of a ground source heat pump with a short ground circuit, used to provide space heating and domestic hot water at a house in southern England. The results indicate that extracting heat from an array of PV-thermal modules would improve the performance of a ground source heat pump with an undersized ground loop. Nevertheless, open air thermal collectors could be more effective, especially during winter. In one model more electricity was saved in ohmic heating than was generated by cooling the PV cells. Cooling the PV modules was found to increase their electrical output up to 4%, but much of the extra electricity was consumed by the cooling pumps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent urban air temperature increase is attributable to the climate change and heat island effects due to urbanization. This combined effects of urbanization and global warming can penetrate into the underground and elevate the subsurface temperature. In the present study, over-100 years measurements of subsurface temperature at a remote rural site were analysed, and an increasing rate of 0.17⁰C per decade at soil depth of 30cm due to climate change was identified in the UK, but the subsurface warming in an urban site showed a much higher rate of 0.85⁰C per decade at a 30cm depth and 1.18⁰C per decade at 100cm. The subsurface urban heat island (SUHI) intensity obtained at the paired urban-rural stations in London showed an unique 'U-shape', i.e. lowest in summer and highest during winter. The maximum SUHII is 3.5⁰C at 6:00 AM in December, and the minimum UHII is 0.2⁰C at 18:00PM in July. Finally, the effects of SUHI on the energy efficiency of the horizontal ground source heat pump (GSHP) were determined. Provided the same heat pump used, the installation at an urban site will maintain an overall higher COP compared with that at a rural site in all seasons, but the highest COP improvement can be achieved in winter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the study of cascade heat pump systems in combination with solar thermal for the production of hot water and space heating in single family houses with relatively high heating demand. The system concept was developed by Ratiotherm GmbH and simulated with TRNSYS 17. The basic cascade system uses the heat pump and solar collectors in parallel operation while a further development is the inclusion of an intermediate store that enables the possibility of serial/parallel operation and the use of low temperature solar heat. Parametric studies in terms of compressor size, refrigerant pair and size of intermediate heat exchanger were carried out for the optimization of the basic system. The system configurations were simulated for the complete year and compared to a reference of a solar thermal system combined with an air source heat pump. The results show ~13% savings in electricity use for all three cascade systems compared to the reference. However, the complexity of the systems is different and thus higher capital costs are expected.