984 resultados para heart weight
Resumo:
INTRODUÇÃO E OBJETIVO: Sabe-se que o tabagismo pode provocar alterações cardiovasculares e redução na sensibilidade à insulina, e que o exercício físico melhora este quadro. O objetivo do estudo foi avaliar o efeito do tabagismo e da prática de atividade física sobre a sensibilidade à insulina em músculo cardíaco de ratos, através da avaliação de expressão do transportador de glicose GLUT4. MÉTODOS: Ratos machos Wistar foram divididos em quatro grupos: (CS) controle, (CE) controle exercitado, (FS) fumante sedentário e (FE) fumante submetido ao exercício físico. Os grupos FS e FE foram submetidos à combustão de quatro cigarros/30 min/60 dias, 2x/dia. Os grupos CE e FE executaram corrida em esteira rolante durante 60 min/60 dias. Foi realizado teste de tolerância à insulina, e a expressão de GLUT4 no coração foi feita através de Western Blotting - ECL e RT-PCR. Foi utilizado método estatístico descritivo e o teste ANOVA, e as diferenças entre os grupos foram consideradas significantes quando P < 0,05. RESULTADOS: Nem o tabagismo nem a atividade física alteraram o peso corpóreo (CS: 364,7 ± 9,7; CE: 372,4 ± 7,2, FS: 368,9 ± 6,7; FE: 376,4 ± 7,8g) e o peso do coração (CS: 1,12 ± 0,05; CE: 1,16 ± 0,04; FS: 1,14 ± 0,05; FE: 1,19 ± 0,05g). A sensibilidade à insulina foi reduzida no grupo fumante, porém, a prática de exercício físico melhorou este quadro (CS: 3,7 ± 0,3; CE: 5,28 ± 0,5*; FS: 2,1 ± 0,7*; FE: 4,8 ± 0,09** %/min; *P < 0,05 vs. CS, **P < 0,05 vs. FS). Os conteúdos de RNAm e de proteína não se alteraram entre os grupos. Porém, quando se calculou o conteúdo total de proteína GLUT4 por grama de tecido, observou-se que o tabagismo causou redução e que o exercício induziu aumento neste parâmetro (CS: 119,72 ± 9,98; CE: 143,09 ± 9,09; FS: 84,36 ± 10,99*; FE: 132,18 ± 11,40# UA/g tecido, *P < 0,05 vs. CS, #P < 0,01 vs. FS). CONCLUSÃO: Conclui-se que o tabagismo reduz a sensibilidade à insulina e a capacidade do coração captar glicose. Já a prática de exercício físico moderado reverte este quadro por completo.
Resumo:
Zinc is an essential nutritional component required for normal development and maintenance of immune functions. The possible effects of zinc in upregulating the host immune response during the acute and chronic phases of experimental Chagas` disease were evaluated. In young, infected and Zn-supplemented animals, higher concentrations of IFN-gamma and NO were observed. During the chronic phase, decreased concentrations of NO and IFN-gamma were found for older infected animals that received Zn supplementation. For young animals, hearts from Zn-supplemented groups displayed reduced inflammatory infiltrate, heart weight and number of amastigote burdens. For older, infected and Zn-supplemented animals amastigote nests were absent with reduced inflammatory cell infiltrate. This study identifies a potentially novel therapeutic approach that could control the parasite load during acute phase of disease, consequently preventing the deleterious, parasite-elicited responses observed during chronic phase. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND Spontaneously hypertensive rats (SHRs) show increased cardiac sympathetic activity, which could stimulate cardiomyocyte hypertrophy, cardiac damage, and apoptosis. Norepinephrine (NE)induced cardiac oxidative stress seems to be involved in SHR cardiac hypertrophy development. Because exercise training (ET) decreases sympathetic activation and oxidative stress, it may alter cardiac hypertrophy in SHR. The aim of this study was to determine, in vivo, whether ET alters cardiac sympathetic modulation on cardiovascular system and whether a correlation exists between cardiac oxidative stress and hypertrophy. METHODS Male SHRs (15-weeks old) were divided into sedentary hypertensive (SHR, n = 7) and exercise-trained hypertensive rats (SHR-T, n = 7). Moderate ET was performed on a treadmill (5 days/week, 60 min, 10 weeks). After ET, cardiopulmonary reflex responses were assessed by bolus injections of 5-HT. Autoregressive spectral estimation was performed for systolic arterial pressure (SAP) with oscillatory components quantified as low (LF: 0.2-0.75 Hz) and high (HF:0.75-4.0 Hz) frequency ranges. Cardiac NE concentration, lipid peroxidation, antioxidant enzymes activities, and total nitrates/nitrites were determined. RESULTS ET reduced mean arterial pressure, SAP variability (SAP var), LIF of SAP, and cardiac hypertrophy and increased cardiopulmonary reflex responses. Cardiac lipid peroxidation was decreased in trained SHRs and positively correlated with NE concentrations (r= 0.89, P < 0.01) and heart weight/body weight ratio (r= 0.72, P < 0.01), and inversely correlated with total nitrates/nitrites (r= -0.79, P < 0.01). Moreover, in trained SHR, cardiac total nitrates/nitrites were inversely correlated with NE concentrations (r= -0.82, P < 0.01). CONCLUSIONS ET attenuates cardiac sympathetic modulation and cardiac hypertrophy, which were associated with reduced oxidative stress and increased nitric oxide (NO) bioavailability. Am J Hypertens 2008;21:1138-1193 (C) 2008 American Journal of Hypertension, Ltd.
Resumo:
OBJECTIVE: To study the quantitative changes in intramyocardial blood vessels in rats in whom nitric oxide synthesis was inhibited. METHODS: Four groups of 10 rats were studied: control (C25 and C40) and L-NAME (L25 and L40). The animals L25 and L40 received L-NAME in the dosage of 50mg/kg/day for 25 and 40 days, respectively. On days 26 and 41 the animals in groups 25 and 40 were sacrificed. Analysis of the myocardium was performed using light microscopy and stereology. RESULTS: Arterial blood pressure and heart weight increased 74.5 and 57.8% after 25 days and 90.2 and 34.6% after 40 days, respectively. Comparing the L-NAME rats with the respective controls revealed that vessel volume density decreased 31.3% after 40 days, and the vessel length-density decreased 53.5% after 25 days and 25.7% after 40 days. The mean cross-sectional area of the vessels showed an important reduction of 154.6% after 25 days. The intramyocardial vessels decreased significantly in length- density in the L-NAME animals. The mean cross-sectional area of the vessels, which normally increases during heart growth between 25 and 40 days, showed a precocious increase by the 25th day in the L-NAME rats. This suggests an increase of the size of the heart, including blood vessels. CONCLUSION: The inhibition of the NO synthesis provokes rarefaction in the intramyocardial vessels that progresses with the time of administration of L-NAME.
Obesity Resistance Promotes Mild Contractile Dysfunction Associated with Intracellular Ca2+ Handling
Resumo:
Abstract Background: Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that. Objective: To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling. Methods: Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet) and obese (four palatable high-fat diets) for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP) and obesity-resistant (OR). Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers. Results: The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats. Conclusion: Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling.
Resumo:
Chagas disease in the chronic phase may develop into cardiac and/or digestive forms. The pathogenesis of the disease is not yet clear and studies have been carried out to elucidate the role of parasite persistence in affected organs. The aim of this study was to detect and quantify Trypanosoma cruzi in paraffin-embedded tissue samples from chronic patients using NPCR (nested polymerase chain reaction) and QPCR (quantitative polymerase chain reaction) methods. These results were correlated to anatomopathological alterations in the heart and gastrointestinal tract (GIT). Of the 23 patients studied, 18 presented the cardiac form and five presented the cardiodigestive form of Chagas disease. DNA samples were randomly isolated from formalin-fixed paraffin-embedded sections of heart and GIT tissue of 23 necropsies and were analyzed through NPCR amplification. T. cruzi DNA was detected by NPCR in 48/56 (85.7%) heart and 35/42 (83.3%) GIT samples from patients with the cardiac form. For patients with the cardiodigestive form, NPCR was positive in 12/14 (85.7%) heart and in 14/14 (100%) GIT samples. QPCR, with an efficiency of 97.6%, was performed in 13 samples (11 from cardiac and 2 from cardiodigestive form) identified previously as positive by NPCR. The number of T. cruzi copies was compared to heart weight and no statistical significance was observed. Additionally, we compared the number of copies in different tissues (both heart and GIT) in six samples from the cardiac form and two samples from the cardiodigestive form. The parasite load observed was proportionally higher in heart tissues from patients with the cardiac form. These results show that the presence of the parasite in tissues is essential to Chagas disease pathogenesis.
Resumo:
Objective: The NALP3 inflammasome functions as a sensor of danger signals and triggers processing and release of IL-1b. Mutations of NALP3 are responsible for the cryopyrin associated periodic syndromes, a group of autoinflammatory disorders that respond to IL1 inhibition. Genetic studies have also linked NALP3 to hypertension in man, but the mechanism is not understood. The aim of this study is to investigate the role of NAPL3 inflammasome in the development of hypertension in an animal model. Design and Method: Six-week old male WT and NALP3 KO mice were used for generating a two-kidney, one clip (2K1C) renovascular hypertension. A U-shaped stainless steel clip (O^ ¼0.12mm) was placed on left renal artery under anaesthesia. The same surgery without clipping was performed in sham mice. At week 6 and 12 after the clipping, intra-arterial blood pressure (BP) was measured in conscious mice. Blood was collected for plasma renin analysis. Heart and kidney were excised and stored for molecular and morphological examinations. n¼5-6 mice per group. Data are mean_SEM. Results: Mean BP was significantly increased at week 6 and 12 in WT-2K1C mice compared to WT-sham group (MBPweek6: 138_2 vs.124_3 mmHg, p<0.01 and MBPweek12: 141_5 vs.122_3 mmHg, p<0.01) followed with an significant increase in heart weight (HW) and a decrease in clipped kidney weight indices in WT-2K1C mice compared to the WT-sham (HW/ BWweek6: 4.65_0.04 vs. 3.99_0.12 mg/g, p<0.001 and HW/BWweek12: 4.94_0.15 vs. 4.22_0.12 mg/g, p<0.001). Interestingly, NALP3 KO-2K1C mice did not develop hypertension. The MBP of KO-2K1C mice was comparable to the KO-sham (MBPweek6: 122_3 vs. 119_3 mmHg, p>0.05 and MBPweek6: 128_5 vs.122_4 mmHg, p>0.05). There was also no significant change in heart and kidney weight indices between KO- 2K1C and KO-sham mice. Conclusion: The preliminary results suggest that absence of NALP3 protects mice from the development of renin-dependent hypertension. Further molecular and morphological examinations are ongoing for the confirmation and mechanism explanation.
Resumo:
OBJECTIVE: The objective of this study was to investigate the effects of chronic and intermittent hypoxia on myocardial morphology. METHODS: Rats randomly divided into 3 groups (n = 14 per group) were exposed to room air (Fio(2) = 0.21), chronic hypoxia (Fio(2) = 0.10), and intermittent hypoxia (chronic hypoxia with 1 hour per day of room air) for 2 weeks. Weight, blood gas analysis, hematocrit, hemoglobin, red cells, and right and left ventricular pressures were measured. Hearts excised for morphologic examination were randomly divided into 2 groups (9 per group for gross morphologic measurements and 5 per group for histologic and morphometric analysis). The weight ratio of right to left ventricles plus interventricular septum, myocyte diameter, cross-sectional area, and free wall thickness in right and left ventricles were measured. RESULTS: Despite the same polycythemia, the right ventricle pressure (P <.05) and ratio of right to left ventricle pressures (P <.02) were higher after chronic hypoxia than intermittent hypoxia. The ratio of heart weight to total body weight and the ratio of right to left ventricles plus interventricular septum was higher (P <.01) in chronic and intermittent hypoxia than in normoxia. Myocyte diameter was not different between the right and left ventricles in normoxia, whereas right ventricle myocytes were larger than left ventricle myocytes in chronic hypoxia (P <.05) and intermittent hypoxia (P <.0005). There was marked dilatation of right ventricle size (P <.001) and marked reduction of left ventricle (P <.001) size in chronic and intermittent hypoxia compared with normoxia. The total ventricular area (right ventricle plus left ventricle area) remained the same in all groups. The wall thickness ratio in chronic hypoxia and intermittent hypoxia was increased (P <.001) compared with normoxia in the right ventricle but not in the left ventricle. CONCLUSIONS: Intermittent reoxygenation episodes do not induce a lesser ventricular hypertrophic response than observed with chronic hypoxia. The functional myocardial preconditioning consequence of intermittent reoxygenation is not supported by structural differences evident with the available techniques.
Resumo:
The goal of this study was to assess the localization and types of thrombosed plaques in cases of sudden cardiac death attributed to coronary artery disease and to evaluate possible correlations with body mass index (BMI) and increased heart weight. This retrospective study was performed on forensic cases for which the cause of death was attributed to coronary artery disease. A complete autopsy and a multi-phase postmortem computed tomography (CT) angiography (MPMCTA) were performed in all cases. Eighty-five cases were selected (mean age, 55.18 ± 11.04 years; 72 men and 13 women). MPMCTA performed prior to autopsy enabled an evaluation of coronary artery perfusion before dissection of the body and helped therefore to guide sampling for histology. An acute coronary thrombosis was found in 57 cases, which included plaque erosion in 26 cases (mean age, 46.73 ± 8.33 years) and rupture or intra-plaque hemorrhage in 31 cases (mean age, 58.23 ± 10.62 years). Erosions were most frequently found in the left anterior descending artery (61.5 %), while only 35.48 % of ruptures were observed in this artery. Chronic coronary pathology was considered as the main cause of death in 28 cases (mean age, 59.64 ± 9.47 years). Sixty-two of the cases (72.94 %) had a BMI in the overweight category (BMI ≥25), with the highest mean BMI in patients with chronic coronary pathology without acute thrombosis found at autopsy. The heart weight was above the predicted reference values in 52 cases (61.18 %). Our results are in accordance with previously published studies on the spatial distribution of vulnerable plaques. We observed a higher percentage of eroded plaques than previously reported. Patients with coronary erosions were significantly younger than those with plaque rupture or those without an acute coronary thrombosis (p values <0.0001). BMI and heart weight were significantly higher for cases without thrombosis in comparison with those with plaque rupture (p values 0.028 and 0.003, respectively). Our results indicating that increased BMI and overweight hearts are associated with chronic ischemic heart disease are compatible with clinical studies. Performing more postmortem studies on forensic autopsies, including modern radiological examinations with MPMCTA, can enhance the detection of vulnerable plaques in living patients and prevent sudden cardiac death.
Resumo:
The influence of chronic nitric oxide synthase inhibition with N G-nitro-L-arginine methyl ester (L-NAME) on body fluid distribution was studied in male Wistar rats weighing 260-340 g. Extracellular, interstitial and intracellular spaces, as well as plasma volume were measured after a three-week treatment with L-NAME (~70 mg/kg per 24 h in drinking water). An increase in extracellular space (16.1 ± 1.1 vs 13.7 ± 0.6 ml/100 g in control group, N = 12, P<0.01), interstitial space (14.0 ± 0.9 vs 9.7 ± 0.6 ml/100 g in control group, P<0.001) and total water (68.7 ± 3.9 vs 59.0 ± 2.9 ml/100 g, P<0.001) was observed in the L-NAME group (N = 8). Plasma volume was lower in L-NAME-treated rats (2.8 ± 0.2 ml/100 g) than in the control group (3.6 ± 0.1 ml/100 g, P<0.001). Blood volume was also lower in L-NAME-treated rats (5.2 ± 0.3 ml/100 g) than in the control group (7.2 ± 0.3 ml/100 g, P<0.001). The increase in total ratio of kidney wet weight to body weight in the L-NAME group (903 ± 31 vs 773 ± 45 mg/100 g in control group, P<0.01) but not in total kidney water suggests that this experimental hypertension occurs with an increase in renal mass. The fact that the heart weight to body weight ratio and the total heart water remained constant indicates that, despite the presence of high blood pressure, no modification in cardiac mass occurred. These data show that L-NAME-induced hypertension causes alterations in body fluid distribution and in renal mass.
Resumo:
Idarubicin is an anthracycline antibiotic extensively used in acute leukemia. In the present study we investigated whether vitamin E and catechin can reduce the toxic effects of idarubicin. Vitamin E (200 IU kg-1 week-1), catechin (200 mg kg-1 week-1), idarubicin (5 mg kg-1 week-1), idarubicin + vitamin E (200 IU kg-1 week-1), and idarubicin + catechin (200 mg kg-1 week-1) combinations were given to male Sprague-Dawley rats weighing 210 to 230 g (N = 6/group). Idarubicin-treated animals exhibited a decrease in body and heart weight, a decrease in myocardial contractility, and changes in ECG parameters (P<0.01). Catechin + idarubicin- and vitamin E + idarubicin-treated groups exhibited similar alterations, but changes were attenuated in comparison to those in cardiac muscle of idarubicin-treated rats (P<0.05). Superoxide dismutase and catalase activity was reduced in the idarubicin-treated group (P<0.05). Glutathione peroxidase levels were decreased in the idarubicin-treated group (P<0.05) and reached maximum concentrations in the catechin- and catechin + idarubicin-treated groups compared to control (P<0.01). Malondialdehyde activity was decreased in the catechin + idarubicin-treated groups compared to control and increased in the other groups, reaching maximum concentrations in the vitamin E-treated group (P<0.01). In electron microscopy studies, swelling of the mitochondria and dilatation of the sarcoplasmic reticulum of myocytes were observed in the idarubicin-treated groups. In groups that were given idarubicin + vitamin E and idarubicin + catechin, the only morphological change was a weak dilatation of the sarcoplasmic reticulum. We conclude that catechin and vitamin E significantly reduce idarubicin-induced cardiotoxicity in rats.
Resumo:
The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP) activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g) were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group). Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05) was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05) in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05) with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01) after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05) after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.
Resumo:
The present study investigated the effects of exercise and anabolic-androgenic steroids on cardiac HSP72 expression. Male Wistar rats were divided into experimental groups: nandrolone exercise (NE, N = 6), control exercise (CE, N = 6), nandrolone sedentary (NS, N = 6), and control sedentary (CS, N = 6). Animals in the NE and NS groups received a weekly intramuscular injection (6.5 mg/kg of body weight) of nandrolone decanoate, while those in the CS and CE groups received mineral oil as vehicle. Animals in the NE and CE groups were submitted to a progressive running program on a treadmill, for 8 weeks. Fragments of the left ventricle were collected at sacrifice and the relative immunoblot contents of HSP72 were determined. Heart weight to body weight ratio was higher in exercised than in sedentary animals (P < 0.05, 4.65 ± 0.38 vs 4.20 ± 0.47 mg/g, respectively), independently of nandrolone, and in nandrolone-treated than untreated animals (P < 0.05, 4.68 ± 0.47 vs 4.18 ± 0.32 mg/g, respectively), independently of exercise. Cardiac HSP72 accumulation was higher in exercised than in sedentary animals (P < 0.05, 677.16 ± 129.14 vs 246.24 ± 46.30 relative unit, respectively), independently of nandrolone, but not different between nandrolone-treated and untreated animals (P > 0.05, 560.88 ± 127.53 vs 362.52 ± 95.97 relative unit, respectively) independently of exercise. Exercise-induced HSP72 expression was not affected by nandrolone. These levels of HSP72 expression in response to nandrolone administration suggest either a low intracellular stress or a possible less protection to the myocardium.
Resumo:
Il y a 4 isoforme de p38 : α, β, δ, and γ. MK5, à l'origine identifié comme étant un régulateur de PRAK (Regulated/Activated Protein Kinase), est maintenant connu pour être activée par la protéine kinase p38 (qui est un mitogène activé par la protéine kinase, MAPK). Cette dernière est impliquée dans les mécanismes de fibrose et d'apoptose pendant l'hypertrophie cardiaque. De plus, MK5 est également activée par les MAPKs atypiques; ERK3 et ERK4. Bien qu’elles soient fortement exprimées dans le coeur, le rôle physiologique de MK5 et ERK3 demeure inconnu. Par conséquent, nous avons étudié l'effet de la constriction aortique transversale (TAC) – induisant un surcharge chronique de pression chez les souris hétèrozygotes knockout pour MK5 (MK5+/-) ou ERK3 (ERK3+/-) et pour leurs types sauvages (MK5+/+ et ERK3+/+). Deux sem post-TAC; le ratio de poids du coeur/poids corporel a été augmenté chez les 2 souris MK5+/- et MK5+/+. L'échocardiographie de la trans-thoracique démontre que la surcharge de pression a altéré la fonction diastolique du ventricule gauche chez MK5+/+, mais pas chez la souris MK5+/-. De plus, nous avons observé moins de dépôt de collagène, évalué par une coloration au trichrome de Masson, 2 et 3 sem post-TAC chez les souris MK5+/-. Parallèlement, le niveau de l’ARNm de collagène type1 alpha-1 a été significativement diminué dans les coeurs des souris MK5+/-, 2 et 3 sem post-TAC. De même, ERK3, mais pas ERK5 ni p38α, co-IP avec MK5 dans les 2 modèles des coeurs TAC; aigus ou chroniques. En revanche, l’ajout exogénique de GST-MK5 a abaissé ERK4 et p38α, mais pas ERK3 dans les lysâtes de coeur de souris. Par contre, GST-ERK3 et GST-p38α ne démontrent aucune co-IP avec MK5. Ces données suggèrent que dans le coeur seul ERK3, et non ERK4 ou p38α, est capable d’interagir avec, et réguler MK5. A niveau physiologique MK5 interagit entièrement avec ERK3 et par conséquent MK5 n’est pas disponible pour lier les protéines exogéniques. Les souris hétérozygotes pour ERK3 (ERK3+/-) ont également démontré une réduction ou une absence de collagène et une faible expression d’ARNm du collagène type1 alpha1, 3 sem post-TAC. Ces résultats démontrent un important rôle pro-fibrotique de la signalisation MK5-ERK3 pendant une surcharge chronique de pression.Nous avons également démontré 5 variant d'épissage de (MK5.1-5), y compris la forme originale (MK5.1). MK5.2 et MK5.5 subissent une délétion de 6 paires de base dans l’exon 12 : MK5.3 manque l'exon 12 : MK5.4 et MK5.5 manquent les exons 2-6. L'expression des ARNm des différents variant d'épissage a été vérifiée par PCR en temps réel (qPCR). Bien que l’expression est ubiquitaire, l'abondance relative de chaque variant était tissu-spécifique (coeur, rein, pancréas, muscle squelettique, poumon, foie, et cerveau). En plus, l'abondance relative des variant d’épissage varie pendant la surcharge de pression et le développement postnatal du coeur. En outre, l'immunofluorescence a indiqué que MK5.1-5.3 se localise au noyau alors que MK5.4-5.5 est situé au niveau cytoplasmic dans les cellules HEK 293 non stimulées. Suite à une stimulation avec l'anisomycin, un activateur de p38 MAPK, MK5.1-5.3 se translocalise du noyau au cytoplasme alors qu’une petite fraction de MK5.4-5.5 translocalise vers le noyau. Ces variant d'épissage peuvent diversifier la signalisation de MK5-ERK3 dans coeur, mais leur rôle exact oblige des recherches supplémentaires. Excepté l’isoforme δ, toutes les isoformes de p38 sont exprimées dans le coeur et la forme α est considérée comme étant l'isoforme dominante. L’analyse par qPCR et immunobuvardage de type western ont démontré que p38α et p38γ sont les deux isoformes prédominantes alors que p38β et p38δ sont exprimées aux mêmes niveaux dans le coeur de rat adulte. L'immunofluorescence a démontré que p38α et p38γ se trouvent dans le cytoplasme et le noyau. Cependant, suite à la surcharge par TAC, p38γ s'est accumulé dans noyau tandis que la distribution de p38α est demeurée inchangée. Ainsi, l'abondance de p38γ et sa translocalisation nucléaire suite à la surcharge de pression indique un rôle potentiel dans l'expression génique pendant le remodelage cardiaque. En conclusion, nous avons mis en évidence pour la première fois un rôle pro-fibrotique pour la signalisation MK5-ERK3 pendant une surcharge chronique de pression. D'ailleurs, les niveaux comparables d'expression de p38γ avec p38α, et la localisation différentielle de p38γ pendant la surcharge aiguë ou chronique de pression suggèrent différents rôles possibles pour ces isoformes pendant le remodelage hypertrophique cardiaque.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)