968 resultados para heart left ventricle performance
Resumo:
Pulmonary fat embolism (PFE) is a common complication of blunt force traumas with bone fractures. Severe forms cause impedance to right ventricular (RV) ejection, with eventual right heart ischaemia and failure. In a prospective study, we have investigated 220 consecutive autopsy cases (73 females, 147 males, mean age 52.1 years, min 14 years, max 91 years). PFE was detected in 52 cases that were divided into three groups according to the degree of PFE (1-3). A fourth group of cases of violent death without PFE was used for comparison. In each case, histology (H&E, Masson) and immunohistochemistry (fibronectin and C5b-9) were performed on six cardiac samples (anterior, lateral and posterior wall of both ventricles). The degree of cardiac damage was registered in each sample and the mean degree of damage was calculated in each case at the RV and left ventricle (LV). Moreover, a parameter ∆ that is the difference between the mean damage at the RV and the LV was calculated in each case. The results were compared within each group and between the groups. In the present study, we could not detect prevalent RV damage in cases of high degree PFE as we did in our previous investigation. In the group PFE3 the difference of the degree of damage between the RV and LV was higher than the one observed in the groups PFE0-2 with the antibody anti-fibronectin. Prevalent right ventricular stress in cases of severe PFE may explain this observation.
Resumo:
An increase in angiotensin-converting enzyme (ACE) activity has been observed in the heart after myocardial infarction (MI). Since most studies have been conducted in chronically infarcted individuals exhibiting variable degrees of heart failure, the present study was designed to determine ACE activity in an earlier phase of MI, before heart failure development. MI was produced in 3-month old male Wistar rats by ligation of the anterior branches of the left coronary artery, control rats underwent sham surgery and the animals were studied 7 or 15 days later. Hemodynamic data obtained for the anesthetized animals showed normal values of arterial blood pressure and of end-diastolic pressure in the right and left ventricular cavities of MI rats. Right and left ventricular (RV, LV) muscle and scar tissue homogenates were prepared to determine ACE activity in vitro by measuring the velocity of His-Leu release from the synthetic substrate Hyp-His-Leu. ACE activity was corrected to the tissue wet weight and is reported as nmol His-Leu g-1 min-1. No significant change in ACE activity in the RV homogenates was demonstrable. A small nonsignificant increase of ACE activity (11 ± 9%; P0.05) was observed 7 days after MI in the surviving left ventricular muscle. Two weeks after surgery, however, ACE activity was 46 ± 11% (P<0.05) higher in infarcted rats compared to sham-operated rats. The highest ACE activity was demonstrable in the scar tissue homogenate. In rats studied two weeks after surgery, ACE activity in the LV muscle increased from 105 ± 7 nmol His-Leu g-1 min-1 in control hearts to 153 ± 11 nmol His-Leu g-1 min-1 (P<0.05) in the remaining LV muscle of MI rats and to 1051 ± 208 nmol His-Leu g-1 min-1 (P<0.001) in the fibrous scar. These data indicate that ACE activity increased in the heart after infarction before heart failure was demonstrable by hemodynamic measurements. Since the blood vessels of the scar drain to the remaining LV myocardium, the high ACE activity present in the fibrous scar may increase the angiotensin II concentration and decrease bradykinin in the cardiac tissues surrounding the infarcted area. The increased angiotensin II in the fibrous scar may contribute to the reactive fibrosis and hypertrophy in the left ventricular muscle surviving infarction
Resumo:
Nous proposons une nouvelle méthode pour quantifier la vorticité intracardiaque (vortographie Doppler), basée sur l’imagerie Doppler conventionnelle. Afin de caractériser les vortex, nous utilisons un indice dénommé « Blood Vortex Signature (BVS) » (Signature Tourbillonnaire Sanguine) obtenu par l’application d’un filtre par noyau basé sur la covariance. La validation de l’indice BVS mesuré par vortographie Doppler a été réalisée à partir de champs Doppler issus de simulations et d’expériences in vitro. Des résultats préliminaires obtenus chez des sujets sains et des patients atteints de complications cardiaques sont également présentés dans ce mémoire. Des corrélations significatives ont été observées entre la vorticité estimée par vortographie Doppler et la méthode de référence (in silico: r2 = 0.98, in vitro: r2 = 0.86). Nos résultats suggèrent que la vortographie Doppler est une technique d’échographie cardiaque prometteuse pour quantifier les vortex intracardiaques. Cet outil d’évaluation pourrait être aisément appliqué en routine clinique pour détecter la présence d’une insuffisance ventriculaire et évaluer la fonction diastolique par échocardiographie Doppler.
Resumo:
OBJECTIVE: To assess the effect of transient and sustained variations in cardiac load on the values of the end-systolic pressure-diameter relation (ESPDR) of the left ventricle. METHODS: We studied 13 dogs under general anesthesia and autonomic blockade. Variations of cardiac loads were done by elevation of blood pressure by mechanical constriction of the aorta. Two protocols were used in each animal: gradual peaking and decreasing pressure variation, the transient arterial hypertension protocol (TAH), and a quick and 10 min sustained elevation, the sustained arterial hypertension protocol(SAH). Then, we compared the ESDR in these two situations. RESULTS: Acute elevation of arterial pressure, being it transitory or sustained, did not alter the heart frequency and increased similarly the preload and after load. However, they acted differently in end systolic pressure-diameter relation. It was greater in the SAH than TAH protocol, 21.0±7.3mmHg/mm vs. 9.2±1.2mmHg/mm (p<0.05). CONCLUSION: The left ventricular ESPDR values determined during sustained pressure elevations were higher than those found during transient pressure elevations. The time-dependent activation of myocardial contractility associated with the Frank-Starling mechanism is the major factor in inotropic stimulation during sustained elevations of blood pressure, determining an increase in the ESPDR values.
Resumo:
Objective - To determine effects of reducing the diameter of the left ventricle of dogs by plication of the left ventricular free wall. Animals - 8 healthy adult mixed-breed dogs. Procedure - Left lateral thoracotomy and a T-shaped pericardiotomy were performed. The free wall of the left ventricle was imbricated with 3 interrupted transfixing sutures applied in a horizontal mattress pattern, using 3-0 polypropylene suture assembled on a straight cutting needle. Surgeons were careful to avoid the coronary vessels. Echocardiography was performed 24 hours before and 48 hours after surgery. Electrocardiography was performed before and 1, 2, 7, 15, 21, 30, and 60 days after surgery. Results - Echocardiographic measurements revealed that the diameter of the left ventricle was reduced by a mean of 23.5%. Electrocardiography revealed ventricular premature complexes 24 hours after surgery that regressed without treatment during the first week after surgery. Conclusions and Clinical Relevance - Plication of the left ventricular free wall of dogs can reduce end-diastolic and end-systolic dimensions of the left ventricle. The technique is simple and does not require cardiopulmonary bypass. According to Laplace's law, the reduction of cardiac diameter leads to reduction on free-wall tension and may improve left ventricular function in dilatated hearts. Thus, additional studies involving dogs with dilated cardiomyopathy should be conducted.
Resumo:
Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology from confocal images and analyzed with finite element techniques. Measured material properties and intraventricular pressures were specified in the models. The results show volume-weighted end-diastolic von Mises stress and strain averaging 50–82% higher in the trabecular tissue than in the compact wall. The volume-weighted-average stresses for the entire LV were 115, 64, and 147Pa in control, underloaded, and overloaded models, while strains were 11, 7, and 4%; thus, neither was normalized in a volume-weighted sense. Localized epicardial strains at mid-longitudinal level were similar among the three groups and to strains measured from high-resolution ultrasound images. Sensitivity analysis showed changes in material properties are more significant than changes in geometry in the overloaded strain adaptation, although resulting stress was similar in both types of adaptation. These results emphasize the importance of appropriate metrics and the role of trabecular tissue in evaluating the evolution of stress and strain in relation to pressure-induced adaptation.
Resumo:
Voluntary exercise (VE) has a beneficial influence on the heart and mean lifespan. The present study evaluates structural adaptations of cardiomyocytes and their mitochondria due to VE by new, unbiased stereological methods. Female, 7-9-week-old mice were randomly assigned to a control (CG, n = 7) or VE group (EG, n = 7). EG animals were housed in cages with free access to a running wheel and had a mean running distance of 6.7 (1.8) km per day. After 4 weeks, the hearts of all mice were processed for light and electron microscopy. We estimated the number and volume of cardiomyocytes by the disector method and the number and volume of mitochondria by estimation of the Euler number. In comparison to CG, VE did not have an effect on the myocardial volume of the left ventricle (CG: 93 (10), EG: 103 (17) (mm(3))), the number of cardiomyocytes (CG: 2.81 (0.27), EG: 2.82 (0.43) (x10(6))) and their number-weighted mean volume. However, the composition of the cardiomyocytes changed due to VE. The total volume of mitochondria (CG: 21.8 (4.9), EG: 32.2 (4.3) (mm(3)), P < 0.01) and the total number (CG: 3.76 (0.44), EG: 7.02 (1.13) (x10(10)), P < 0.001) were significantly higher in EG than in CG. The mean number-weighted mitochondrial volume was smaller in EG than in CG (P < 0.05). In summary, VE does not alter ventricular volume nor cardiomyocyte volume or number but the oxidative capacity of cardiomyocytes by an increased mitochondrial number and total volume in the left ventricle. These structural changes may participate in the beneficial effects of VE.
Resumo:
Non-compaction of the ventricular myocardium (NCM) is a genetic cardiomyopathy usually due to mutationof the G4.5 gene located in the Xq28 chromosomal region. This congenital disorder is characterized by pronounced trabeculations and intertrabecular recesses resulting from abnormal embryogenesis between the fifth and eighth fetal weeks. The reported prevalence in the general population is between 0.014% and 1.3%. The classic triad of complications includes heart failure, ventricular arrhythmias and systemic embolic events, although some patients have an asymptomatic form. NCM is commonly diagnosed by echocardiography, but contrast ventriculography, CT and MRI can also be used. Here we present a case of left ventricle NCM, manifested after respiratory infection, in a pregnant patient with congenital thrombophilia and a history of myocardial infarction.
Resumo:
Introduction: Arrhythmogenic right ventricular dysplasia (ARVD), a cardiomyopathy characterized by fibrofatty degeneration of the myocardium with progressive dysfunction, electrical instability, and sudden death, occurs in approximately 1 in 5000 people in the United States. Case Presentation: We present a nine-year-old girl complaining of dyspnea, easy fatigability and skin lesions. She had a history of an occasional epistaxis and weakness since 20 days before her admission, accompanied by the symptoms and signs of common cold, specially cough, during the last two days. Conclusions: This case does confirm that dilated cardiomyopathy’s spectrum is wider than ever known and that like what happened at the congress of Boston in 2006, a more comprehensive approach to its genetic types needs to be done.
Resumo:
In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 ± 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction.
Resumo:
This is a case report of a double-outlet left ventricle associated with tricuspid atresia and hypoplasia of the right ventricle, diagnosed during echocardiography with color-flow imaging, in a three-month-old child who presented with fatigue and cyanosis. The child underwent palliative pulmonary arterial banding without an invasive procedure, and showed sustained improvement during follow-up.
Resumo:
Rupture of the left ventricle following mitral valve replacement is a catastrophic complication with deadly consequences. We report here the case of a 75-year-old man who underwent elective mitral valve replacement for severe mitral regurgitation. Delayed type 1 rupture of the left ventricle developed 3 hours postoperatively in the intensive care unit. A salvaging maneuver was used, which gained time, allowing reoperation and successful intraventricular repair.