980 resultados para hazard


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pedestrians’ use of mp3 players or mobile phones can pose the risk of being hit by motor vehicles. We present an approach for detecting a crash risk level using the computing power and the microphone of mobile devices that can be used to alert the user in advance of an approaching vehicle so as to avoid a crash. A single feature extractor classifier is not usually able to deal with the diversity of risky acoustic scenarios. In this paper, we address the problem of detection of vehicles approaching a pedestrian by a novel, simple, non resource intensive acoustic method. The method uses a set of existing statistical tools to mine signal features. Audio features are adaptively thresholded for relevance and classified with a three component heuristic. The resulting Acoustic Hazard Detection (AHD) system has a very low false positive detection rate. The results of this study could help mobile device manufacturers to embed the presented features into future potable devices and contribute to road safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The construction industry is well known for its high accident rate and many practitioners consider a preventative approach to be the most important means of bringing about improvements. This paper addresses previous research and the weaknesses of existing preventative approaches and a new application is described and illustrated involving the use of a multi-dimensional simulation tool - Construction Virtual Prototyping (CVP). Methodology: A literature review was conducted to investigate previous studies of hazard identification and safety management and to develop the new approach. Due to weaknesses in current practice, the research study explored the use of computer simulation techniques to create virtual environments where users can explore and identify construction hazards. Specifically, virtual prototyping technology was deployed to develop typical construction scenarios in which unsafe or hazardous incidents occur. In a case study, the users’ performance was evaluated their responses to incidents within the virtual environment and the effectiveness of the computer simulation system established though interviews with the safety project management team. Findings: The opinions and suggestions provided by the interviewees led to the initial conclusion that the simulation tool was useful in assisting the safety management team’s hazard identification process during the early design stage. Originality: The research introduces an innovative method to support the management teams’ reviews of construction site safety. The system utilises three-dimensional modelling and four-dimensional simulation of worker behaviour, a configuration that has previously not been employed in construction simulations. An illustration of the method’s use is also provided, together with a consideration of its strengths and weaknesses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposures to traffic-related air pollution (TRAP) can be particularly high in transport microenvironments (i.e. in and around vehicles) despite the short durations typically spent there. There is a mounting body of evidence that suggests that this is especially true for fine (b2.5 μm) and ultrafine (b100 nm, UF) particles. Professional drivers, who spend extended periods of time in transport microenvironments due to their job, may incur exposures markedly higher than already elevated non-occupational exposures. Numerous epidemiological studies have shown a raised incidence of adverse health outcomes among professional drivers, and exposure to TRAP has been suggested as one of the possible causal factors. Despite this, data describing the range and determinants of occupational exposures to fine and UF particles are largely conspicuous in their absence. Such information could strengthen attempts to define the aetiology of professional drivers' illnesses as it relates to traffic combustion-derived particles. In this article, we suggest that the drivers' occupational fine and UF particle exposures are an exemplar case where opportunities exist to better link exposure science and epidemiology in addressing questions of causality. The nature of the hazard is first introduced, followed by an overview of the health effects attributable to exposures typical of transport microenvironments. Basic determinants of exposure and reduction strategies are also described, and finally the state of knowledge is briefly summarised along with an outline of the main unanswered questions in the topic area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As evidenced with the 2011 floods the state of Queensland in Australia is quite vulnerable to this kind of disaster. Climate change will increase the frequency and magnitude of such events and will have a variety of other impacts. To deal with these governments at all levels need to be prepared and work together. Since most of the population of the state is located in the coastal areas and these areas are more vulnerable to the impacts of climate change this paper examines climate change adaptation efforts in coastal Queensland. The paper is part of a more comprehensive project which looks at the critical linkages between land use and transport planning in coastal Queensland, especially in light of increased frequencies of cyclonic activity and other impacts associated with climate change. The aim is improving coordination between local and state government in addressing land use and transport planning in coastal high hazard areas. By increasing the ability of local governments and state agencies to coordinate planning activities, we can help adapt to impacts of climate change. Towards that end, we will look at the ways that these groups currently interact, especially with regard to issues involving uncertainty related to climate change impacts. Through surveys and interviews of Queensland coastal local governments and state level planning agencies on how they coordinate their planning activities at different levels as well as how much they take into account the linkage of transportation and land use we aim to identify the weaknesses of the current planning system in responding to the challenges of climate change adaptation. The project will identify opportunities for improving the ways we plan and coordinate planning, and make recommendations to improve resilience in advance of disasters so as to help speed up recovery when they occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. METHODS: 36 visually normal participants (aged 19 – 80 years), completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields. and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus, and sensitivity for displacement in a random-dot kinematogram (Dmin). Participants also completed a hazard perception test (HPT) which measured participants’ response times to hazards embedded in video recordings of real world driving which has been shown to be linked to crash risk. RESULTS: Dmin for the random-dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random-dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. CONCLUSION: These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception in order to develop better interventions to improve road safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motorcycle trauma is a serious road safety issue in Queensland and throughout Australia. In 2009, Queensland Transport (later Transport and Main Roads or TMR) appointed CARRS-Q to provide a three-year program of Road Safety Research Services for Motorcycle Rider Safety. Funding for this research originated from the Motor Accident Insurance Commission. This program of research was undertaken to produce knowledge to assist TMR to improve motorcycle safety by further strengthening the licensing and training system to make learner riders safer by developing a pre-learner package (Deliverable 1), and by evaluating the QRide CAP program to ensure that it is maximally effective and contributes to the best possible training for new riders (Deliverable 2). The focus of this report is Deliverable 3 of the overall program of research. It identifies potential new licensing components that will reduce the incidence of risky riding and improve higher-order cognitive skills in new riders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing and prioritising cost-effective strategies to mitigate the impacts of traffic incidents and accidents on non-recurrent congestion on major roads represents a significant challenge for road network managers. This research examines the influence of numerous factors associated with incidents of various types on their duration. It presents a comprehensive traffic incident data mining and analysis by developing an incident duration model based on twelve months of incident data obtained from the Australian freeway network. Parametric accelerated failure time (AFT) survival models of incident duration were developed, including log-logistic, lognormal, and Weibul-considering both fixed and random parameters, as well as a Weibull model with gamma heterogeneity. The Weibull AFT models with random parameters were appropriate for modelling incident duration arising from crashes and hazards. A Weibull model with gamma heterogeneity was most suitable for modelling incident duration of stationary vehicles. Significant variables affecting incident duration include characteristics of the incidents (severity, type, towing requirements, etc.), and location, time of day, and traffic characteristics of the incident. Moreover, the findings reveal no significant effects of infrastructure and weather on incident duration. A significant and unique contribution of this paper is that the durations of each type of incident are uniquely different and respond to different factors. The results of this study are useful for traffic incident management agencies to implement strategies to reduce incident duration, leading to reduced congestion, secondary incidents, and the associated human and economic losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper examines the impact of the introduction of no-fault divorce legislation in Australia. The approach used is rather novel, a hazard model of the divorce rate is estimated with the role of legislation captured via a time-varying covariate. The paper concludes that contrary to US empirical evidence, no-fault divorce legislation appears to have had a positive impact upon the divorce rate in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study used a video-based hazard perception dual task to compare the hazard perception skills of young drivers with middle aged, more experienced drivers and to determine if these skills can be improved with video-based road commentary training. The primary task required the participants to detect and verbally identify immediate hazard on video-based traffic scenarios while concurrently performing a secondary tracking task, simulating the steering of real driving. The results showed that the young drivers perceived fewer immediate hazards (mean = 75.2%, n = 24, 19 females) than the more experienced drivers (mean = 87.5%, n = 8, all females), and had longer hazard perception times, but performed better in the secondary tracking task. After the road commentary training, the mean percentage of hazards detected and identified by the young drivers improved to the level of the experienced drivers and was significantly higher than that of an age and driving experience matched control group. The results will be discussed in the context of psychological theories of hazard perception and in relation to road commentary as an evidence-based training intervention that seems to improve many aspects of unsafe driving behaviour in young drivers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latex allergy is a serious, possibly life threatening health hazard in the perioperative environment. Policy and procedures should be developed to identify patients who may be sensitive to latex and to ensure the avoidance of latex products in their care. Healthcare workers should also take steps to avoid exposure and protect themselves from hypersensitivity reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an ffective input for travel time prediction. In this paper, the hazard based prediction odels are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS) for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.