235 resultados para hépatite aiguë
Resumo:
Différentes translocations génomiques sont fréquemment associées à l'apparition de leucémies myéloïdes aiguës (LMA). Ces translocations génomiques résultent de l’assemblage de deux gènes conduisant à la production d'une protéine de fusion. C'est le cas de la translocation t (3; 5) (q25.1; q34) impliquant le suppresseur tumoral NPM et l'oncogène MLF1 donnant naissance à la protéine de fusion NPM-MLF1. Généralement, les gènes impliqués dans ces translocations contrôlent la croissance cellulaire, la différenciation ou la survie cellulaire. Cependant, pour NPM-MLF1 les causes du gain ou de la perte de fonction associée à la translocation demeurent inconnues car nous ne savons pas comment cette translocation peut favoriser ou participer à l'avènement de la LMA. Le but de ce travail est d’analyser le rôle de NPM-MLF1 dans le cancer et d’examiner comment son activité contribue à la leucémie en faisant des études d’interactions protéine/protéine. En effet, l’étude de la fonction d’une protéine implique souvent de connaître ses partenaires d’interactions. Pour ce faire, la technique de double hybride dans la souche de levure AH109 a été utilisée. Tout d’abord, les ADN complémentaires (ADNc) de MLF1, NPM1 et de NPM-MLF1, MLF1-Like (une partie de MLF1 de l’acide aminé 94 à 157) normaux et mutés du domaine MTG8-Like constitué des acides aminés (a.a.) 151 à 164 de MLF1 (excepté NPM) ont été clonés dans un vecteur d'expression de levure pGBKT7. Les ADNc de GFI-1, mSin3A, PLZF, HDAC1 et HDAC3 ont été clonés dans le plasmide pGADT7 de façon à créer des protéines de fusion synthétiques avec le domaine de liaison à l'ADN et de trans-activation de la protéine GAL4. Le plasmide pGBKT7 possède un gène TRP1 et pGADT7 un gène LEU2 qui permettent la sélection des clones insérés dans la levure. Aussi, le pGBKT7 a un épitope c-myc et pGADT7 un épitope HA qui permet de voir l’expression des protéines par buvardage de type Western. Après la transformation des levures les interactions protéine/protéine ont été observées en vérifiant l’expression des gènes rapporteurs HIS3, LacZ, MEL1, ADE2 de la levure en utilisant des milieux de sélection YPD/-Leu/-Trp, YPD/-Leu/-Trp/-His, YPD/-Leu/-Trp/-His/-Ade, YPD/-Leu/-Trp/+ X-Gal, YPD/-Leu/-Trp/ + X-α-Gal. Ensuite, les interactions trouvées par double-hybride ont été vérifiées dans les cellules érythroleucémiques K562 par immuno-précipitation (IP) de protéines suivies de buvardages Westerns avec les anticorps appropriés. NPM-MLF1, MLF1, MTG8, MLF1-Like surexprimés dans les cellules K562 ont été clonés dans le plasmide pOZ-FH-N. pOZ-FH-N possède un récepteur IL-2 qui permet de sélectionner les cellules qui l’expriment ainsi qu’un tag Flag-HA qui permet de voir l’expression des protéines par buvardage-Western. Les résultats du double-hybride suggèrent une interaction faible de NPM-MLF1 avec HDAC1, HDAC3 et mSin3A ainsi qu’une interaction qui semble plus évidente entre NPM-MLF1 et PLZF, GFI-1. NPM interagit avec GFI-1 et mSin3A. Aussi, MLF1 et MLF1-Like interagissent avec HDAC1, HDAC3, GFI-1, PLZF mais pas avec mSin3A. Les IP suggèrent que NPM-MLF1 interagit avec HDAC1, HDAC3, mSin3A et PLZF. MLF1 et MLF1-Like interagissent avec HDAC1, HDAC3 et mSin3A. L’interaction de NPM-MLF1 avec GFI-1, MLF1 et MLF1-Like avec PLZF et GFI-1 n’a pas encore été vérifiée par IP. Ainsi, nos observations permettent de suggérer que NPM-MF1, MLF1 et NPM pourraient jouer un rôle dans la transcription et la régulation de l’expression de certains gènes importants dans l’hématopoïèse et une variété de processus cellulaires parce qu’ils interagissent avec différents corépresseurs. En déterminant les partenaires protéiques de MLF1, NPM et NPM-MLF1, leurs fonctions et comment NPM-MLF1 influence et modifie le fonctionnement cellulaire normal; il sera possible de renverser le processus de LMA favorisé par la t (3; 5) NPM-MLF1 par la technologie d’interférence à l’ARN.
Resumo:
Les efforts investis pour diminuer les risques de développer un infarctus du myocarde sont nombreux. Aujourd’hui les médecins prennent connaissance des divers facteurs de risque connus prédisposant aux syndromes coronariens aigus (SCA) dans le but de prendre en charge les patients «à risque» [1]. Bien que le suivi rigoureux et le contrôle de certains facteurs de risque modifiables aient permis une meilleure gestion des cas de SCA, les cas d’infarctus persistent de manière encore trop fréquente dans le monde. Puisque d’importantes études ont démontré que les SCA pouvaient survenir sans même la présence des facteurs de risque conventionnels [2, 3], les chercheurs se sont penchés sur un autre mécanisme potentiellement responsable de l’avènement des SCA : l’inflammation. L’inflammation joue un rôle prépondérant dans l’initiation, la progression et les complications de l’athérosclérose [4, 5] mais aussi dans les situations post-infarctus [6, 7]. Au cours des dernières années, le contrôle du processus inflammatoire est devenu une cible de choix dans la prévention et le traitement des SCA. Cependant, malgré les efforts investis, aucun de ces traitements ne s’est avéré pleinement efficace dans l’atteinte du but ultime visé par une diminution de l’inflammation : la diminution de la mortalité. Le complément est un système complexe reconnu principalement pour son rôle primordial dans l’immunité [2]. Cependant, lorsqu’il est activé de manière inappropriée ou excessive, il peut être à l’origine de nombreux dommages cellulaires caractéristiques de plusieurs pathologies inflammatoires dont font partie les complications de l’athérosclérose et des événements post-infarctus. Le travail effectué dans le cadre de mon doctorat vise à établir les rôles physiopathologiques du complément dans les interactions de l’axe thrombose-inflammation caractéristiques des SCA dans le but ultime d’identifier des cibles thérapeutiques permettant le développement de nouvelles approches pour la prévention et le traitement de ces pathologies. Les principaux résultats obtenus durant mon cursus suggèrent d’abord que la voie alterne du complément peut représenter une cible thérapeutique de choix dans les maladies coronariennes aiguës puisque l’activation terminale du complément semble y être principalement causée par l’activation du cette voie. De faibles niveaux sériques de MBL (mannan-binding lectin) et une activation terminale négligeable du complément caractérisent plutôt la maladie coronarienne stable. En comparant l’activité relative de chacune des voies du complément chez des cohortes de patients traités ou non par un anticorps spécifique à la protéine C5 du complément (pexelizumab), un second volet démontre quant à lui qu’une inhibition de l’activation du C5 n’a pas d’effet bénéfique majeur sur l’inhibition de la formation du complexe sC5b-9 ou sur les événements cliniques subséquents. Par conséquent, nous avons exploré, à l’aide d’un modèle in vitro, les raisons de l’inefficacité du traitement. Les résultats révèlent que le blocage du C5 avec le pexelizumab inhibe la production de l’anaphylatoxine pro-inflammatoire C5a et du complexe terminal du complément sans toutefois avoir d’effet sur l’apoptose des cellules endothéliales produites induite par le sérum des patients atteints de STEMI. Finalement, une autre section stipule que l’atorvastatine diminue l’activation du complément induite par les plaquettes sanguines chez des patients hypercholestérolémiques, mettant en évidence l’importance du rôle de cette statine dans la réduction des effets délétères de l’activation du système du complément médié par les plaquettes. Ensemble, l’étude du rôle spécifique des différentes voies d’activation du complément dans des contextes pathologiques variés, l’analyse des effets d’une inhibition spécifique de la protéine C5 du complément dans la progression des SCA et la mise en évidence des interactions entre l’activation du complément et les plaquettes activées ont contribué au développement d’une meilleure connaissance des rôles physiopathologiques du complément dans la progression de la maladie coronarienne.