890 resultados para gut microbiota


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence of obesity has reached alarming levels worldwide, thus increasing the risk of development of metabolic disorders (e.g. type 2 diabetes, coronary heart disease (CHD) and cancer). Among the causes of obesity, diet and lifestyle play a central role. Although the treatment of obesity may appear quite straightforward, by simply re-addressing the balance between energy intake and energy expenditure, practically it has been very challenging. In the search for new therapeutic targets for treatment of obesity and related disorders, the gut microbiota and its activities have been investigated in relation to obesity. The human gut microbiota has already been shown to influence total energy intake and lipid metabolism, particularly through colonic fermentation of undigestible dietary constituents and production of short chain fatty acids (SCFA). Recent studies have highlighted the contribution of the gut microbiota to mammalian metabolism and energy harvested from the diet. A dietary modulation of the gut microbiota and its metabolic output could positively influence host metabolism and, therefore, constitute a potential coadjutant approach in the management of obesity and weight loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronary heart disease (CHD) is the leading cause of mortality in Western societies, affecting about one third of the population before their seventieth year. Over the past decades modifiable risk factors of CHD have been identified, including smoking and diet. These factors when altered can have a significant impact on an individuals' risk of developing CHD, their overall health and quality of life. There is strong evidence suggesting that dietary intake of plant foods rich in fibre and polyphenolic compounds, effectively lowers the risk of developing CHD. However, the efficacy of these foods often appears to be greater than the sum of their recognised biologically active parts. Here we discuss the hypothesis that beneficial metabolic and vascular effects of dietary fibre and plant polyphenols are due to an up regulation of the colon-systemic metabolic axis by these compounds. Fibres and many polyphenols are converted into biologically active compounds by the colonic microbiota. This microbiota imparts great metabolic versatility and dynamism, with many of their reductive or hydrolytic activities appearing complementary to oxidative or conjugative human metabolism. Understanding these microbial activities is central to determining the role of different dietary components in preventing or beneficially impacting on the impaired lipid metabolism and vascular dysfunction that typifies CHD and type 11 diabetes. This approach lays the foundation for rational selection of health promoting foods, rational target driven design of functional foods, and provides an essential thus-far, overlooked, dynamic to our understanding of how foods recognised as "healthy" impact on the human metabonome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have shown an inverse association between dietary intake of whole grains and the risk of chronic disease. This may be related to the ability to mediate a prebiotic modulation of gut microbiota. However, no studies have been conducted on the microbiota modulatory capability of whole-grain (WG) cereals. In the present study, the impact of WG wheat on the human intestinal microbiota compared to wheat bran (WB) was determined. A double-blind, randomised, crossover study was carried out in thirty-one volunteers who were randomised into two groups and consumed daily 48g breakfast cereals, either WG or WB, in two 3-week study periods, separated by a 2-week washout period. Numbers of faecal bifidobacteria and lactobacilli (the target genera for prebiotic intake), were significantly higher upon WG ingestion compared with WB. Ingestion of both breakfast cereals resulted in a significant increase in ferulic acid concentrations in blood but no discernible difference in faeces or urine. No significant differences in faecal SCFA, fasting blood glucose, insulin, total cholesterol (TC), TAG or HDL-cholesterol were observed upon ingestion of WG compared with WB. However, a significant reduction in TC was observed in volunteers in the top quartile of TC concentrations upon ingestion of either cereal. No adverse intestinal symptoms were reported and WB ingestion increased stool frequency. Daily consumption of WG wheat exerted a pronounced prebiotic effect on the human gut microbiota composition. This prebiotic activity may contribute towards the beneficial physiological effects of WG wheat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-stage continuous fermentation systems were employed to examine the effects of GanedenBC30 supplementation on the human gastrointestinal microbiota in relation to pathogen challenge in vitro. Denaturing gradient gel electrophoresis analysis demonstrated that GanedenBC30 supplementation modified the microbial profiles in the fermentation systems compared with controls, with profiles clustering according to treatment. Overall, GanedenBC30 supplementation did not elicit major changes in bacterial population counts in vitro, although notably higher Bcoa191 counts were seen following probiotic supplementation (compared to the controls). Pathogen challenge did not elicit significant modification of the microbial counts in vitro, although notably higher Clit135 counts were seen in the control system post-Clostridium difficile challenge than in the corresponding GanedenBC30-supplemented systems. Sporulation appears to be associated with the anti-microbial activity of GanedenBC30, suggesting that a bi-modal lifecycle of GanedenBC30 in vivo may lead to anti-microbial activity in distal regions of the gastrointestinal tract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sweeteners are being sourced to lower the energetic value of confectionery including chocolates. Some, especially non-digestible carbohydrates, may possess other benefits for human health upon their fermentation by the colonic microbiota. The present study assessed non-digestible carbohydrate sweeteners, selected for use in low-energy chocolates, for their ability to beneficially modulate faecal bacterial profiles in human volunteers. Forty volunteers consumed a test chocolate (low-energy or experimental chocolate) containing 22·8 g of maltitol (MTL), MTL and polydextrose (PDX), or MTL and resistant starch for fourteen consecutive days. The dose of the test chocolates was doubled every 2 weeks over a 6-week period. Numbers of faecal bifidobacteria significantly increased with all the three test treatments. Chocolate containing the PDX blend also significantly increased faecal lactobacilli (P = 0·00 001) after the 6 weeks. The PDX blend also showed significant increases in faecal propionate and butyrate (P = 0·002 and 0·006, respectively). All the test chocolates were well tolerated with no significant change in bowel habit or intestinal symptoms even at a daily dose of 45·6 g of non-digestible carbohydrate sweetener. This is of importance not only for giving manufacturers a sugar replacement that can reduce energetic content, but also for providing a well-tolerated means of delivering high levels of non-digestible carbohydrates into the colon, bringing about improvements in the biomarkers of gut health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polydextrose is a randomly linked complex glucose oligomer that is widely used as a sugar replacer, bulking agent, dietary fiber and prebiotic. Polydextrose is poorly utilized by the host and, during gastrointestinal transit, it is slowly degraded by intestinal microbes, although it is not known which parts of the complex molecule are preferred by the microbes. The microbial degradation of polydextrose was assessed by using a simulated model of colonic fermentation. The degradation products and their glycosidic linkages were measured by combined gas chromatography and mass spectrometry, and compared to those of intact polydextrose. Fermentation resulted in an increase in the relative abundance of non-branched molecules with a concomitant decrease in single-branched glucose molecules and a reduced total number of branching points. A detailed analysis showed a preponderance of 1,6 pyranose linkages. The results of this study demonstrate how intestinal microbes selectively degrade polydextrose, and provide an insight into the preferences of gut microbiota in the presence of different glycosidic linkages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two by two experimental study has been designed to determine the effect of gut microbiota on energy metabolism in mouse models. The metabolic phenotype of germ-free (GF, n = 20) and conventional (n = 20) mice was characterized using a NMR spectroscopy-based metabolic profiling approach, with a focus on sexual dimorphism (20 males, 20 females) and energy metabolism in urine, plasma, liver, and brown adipose tissue (BAT). Physiological data of age-matched GF and conventional mice showed that male animals had a higher weight than females in both groups. In addition, conventional males had a significantly higher total body fat content (TBFC) compared to conventional females, whereas this sexual dimorphism disappeared in GF animals (i.e., male GF mice had a TBFC similar to those of conventional and GF females). Profiling of BAT hydrophilic extracts revealed that sexual dimorphism in normal mice was absent in GF animals, which also displayed lower BAT lactate levels and higher levels of (D)-3-hydroxybutyrate in liver, plasma, and BAT, together with lower circulating levels of VLDL. These data indicate that the gut microbiota modulate the lipid metabolism in BAT, as the absence of gut microbiota stimulated both hepatic and BAT lipolysis while inhibiting lipogenesis. We also demonstrated that (1)H NMR metabolic profiles of BAT were excellent predictors of BW and TBFC, indicating the potential of BAT to fight against obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro batch culture fermentation experiment was conducted with fecal inocula from three healthy volunteers in the presence and absence of a red wine extract. Changes in main bacterial groups were determined by FISH during a 48 h fermentation period. The catabolism of main flavonoids (i.e., flavan-3-ols and anthocyanins) and the formation of a wide a range of phenolic microbial metabolites were determined by a targeted UPLC-PAD-ESI-TQ MS method. Statistical analysis revealed that catechol/pyrocatechol, as well as 4-hydroxy-5-(phenyl)-valeric, 3- and 4-hydroxyphenylacetic, phenylacetic, phenylpropionic, and benzoic acids, showed the greatest increases in concentration during fermentation, whereas 5-(3′-hydroxyphenyl)-γ-valerolactone, its open form 4-hydroxy-5-(3′-hydroxyphenyl)-valeric acid, and 3,4-dihydroxyphenylacetic acid represented the largest interindividual variations in the catabolism of red wine polyphenols. Despite these changes, microbial catabolism did not produce significant changes in the main bacterial groups detected, although a slight inhibition of the Clostridium histolyticum group was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The colonic microbiota undergoes certain age related changes that may affect health. For example, above the age of 55–65 y, populations of bifidobacteria are known to decrease markedly. Bifidobacteria are known inhibitors of pathogenic microbes and a decrease in their activities may increase susceptibility to infections. There is therefore interest in trying to reverse their decline in aged persons. As the gut microbiota responds to dietary intervention, both probiotics and prebiotics have been tested in this regard. Probiotics are live microbes in the diet, whereas prebiotics are fermentable ingredients that specifically target components of the indigenous microbiota seen to be beneficial. We have published a recent paper demonstrating that prebiotic galactooligosaccharides can exert power effects upon bifidobacteria in the gut flora of elderly persons (both in vivo and in vitro). This addendum summarizes research that led up to this study and discusses the possible impact of prebiotics in impacting upon the gut health of aged persons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition and activity of the gut microbiota codevelop with the host from birth and is subject to a complex interplay that depends on the host genome, nutrition, and life-style. The gut microbiota is involved in the regulation of multiple host metabolic pathways, giving rise to interactive host-microbiota metabolic, signaling, and immune-inflammatory axes that physiologically connect the gut, liver, muscle, and brain. A deeper understanding of these axes is a prerequisite for optimizing therapeutic strategies to manipulate the gut microbiota to combat disease and improve health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Proper interactions between the intestinal mucosa, gut microbiota and nutrient flow are required to establish homoeostasis of the host. Since the proximal part of the small intestine is the first region where these interactions occur, and since most of the nutrient absorption occurs in the jejunum, it is important to understand the dynamics of metabolic responses of the mucosa in this intestinal region.Design: Germ-free mice aged 8-10 weeks were conventionalised with faecal microbiota, and responses of the jejunal mucosa to bacterial colonisation were followed over a 30-day time course. Combined transcriptome, histology, (1)H NMR metabonomics and microbiota phylogenetic profiling analyses were used.Results: The jejunal mucosa showed a two-phase response to the colonising microbiota. The acute-phase response, which had already started 1 day after conventionalisation, involved repression of the cell cycle and parts of the basal metabolism. The secondary-phase response, which was consolidated during conventionalisation (days 4-30), was characterised by a metabolic shift from an oxidative energy supply to anabolic metabolism, as inferred from the tissue transcriptome and metabonome changes. Detailed transcriptome analysis identified tissue transcriptional signatures for the dynamic control of the metabolic reorientation in the jejunum. The molecular components identified in the response signatures have known roles in human metabolic disorders, including insulin sensitivity and type 2 diabetes mellitus.Conclusion: This study elucidates the dynamic jejunal response to the microbiota and supports a prominent role for the jejunum in metabolic control, including glucose and energy homoeostasis. The molecular signatures of this process may help to find risk markers in the declining insulin sensitivity seen in human type 2 diabetes mellitus, for instance.