798 resultados para greedy heuristics
Resumo:
Modern database systems incorporate a query optimizer to identify the most efficient "query execution plan" for executing the declarative SQL queries submitted by users. A dynamic-programming-based approach is used to exhaustively enumerate the combinatorially large search space of plan alternatives and, using a cost model, to identify the optimal choice. While dynamic programming (DP) works very well for moderately complex queries with up to around a dozen base relations, it usually fails to scale beyond this stage due to its inherent exponential space and time complexity. Therefore, DP becomes practically infeasible for complex queries with a large number of base relations, such as those found in current decision-support and enterprise management applications. To address the above problem, a variety of approaches have been proposed in the literature. Some completely jettison the DP approach and resort to alternative techniques such as randomized algorithms, whereas others have retained DP by using heuristics to prune the search space to computationally manageable levels. In the latter class, a well-known strategy is "iterative dynamic programming" (IDP) wherein DP is employed bottom-up until it hits its feasibility limit, and then iteratively restarted with a significantly reduced subset of the execution plans currently under consideration. The experimental evaluation of IDP indicated that by appropriate choice of algorithmic parameters, it was possible to almost always obtain "good" (within a factor of twice of the optimal) plans, and in the few remaining cases, mostly "acceptable" (within an order of magnitude of the optimal) plans, and rarely, a "bad" plan. While IDP is certainly an innovative and powerful approach, we have found that there are a variety of common query frameworks wherein it can fail to consistently produce good plans, let alone the optimal choice. This is especially so when star or clique components are present, increasing the complexity of th- e join graphs. Worse, this shortcoming is exacerbated when the number of relations participating in the query is scaled upwards.
Resumo:
Compressive Sensing (CS) theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate. In recent years, many recovery algorithms have been proposed to reconstruct the signal efficiently. Subspace Pursuit and Compressive Sampling Matching Pursuit are some of the popular greedy methods. Also, Fusion of Algorithms for Compressed Sensing is a recently proposed method where several CS reconstruction algorithms participate and the final estimate of the underlying sparse signal is determined by fusing the estimates obtained from the participating algorithms. All these methods involve solving a least squares problem which may be ill-conditioned, especially in the low dimension measurement regime. In this paper, we propose a step prior to least squares to ensure the well-conditioning of the least squares problem. Using Monte Carlo simulations, we show that in low dimension measurement scenario, this modification improves the reconstruction capability of the algorithm in clean as well as noisy measurement cases.
Resumo:
The Internet has enabled the creation of a growing number of large-scale knowledge bases in a variety of domains containing complementary information. Tools for automatically aligning these knowledge bases would make it possible to unify many sources of structured knowledge and answer complex queries. However, the efficient alignment of large-scale knowledge bases still poses a considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algorithm for aligning knowledge bases with millions of entities and facts. SiGMa is an iterative propagation algorithm which leverages both the structural information from the relationship graph as well as flexible similarity measures between entity properties in a greedy local search, thus making it scalable. Despite its greedy nature, our experiments indicate that SiGMa can efficiently match some of the world's largest knowledge bases with high precision. We provide additional experiments on benchmark datasets which demonstrate that SiGMa can outperform state-of-the-art approaches both in accuracy and efficiency.
Resumo:
Two methods of obtaining approximate solutions to the classic General Job-shop Scheduling Program are investigated. The first method is iterative. A sampling of the solution space is used to decide which of a collection of space pruning constraints are consistent with "good" schedules. The selected space pruning constraints are then used to reduce the search space and the sampling is repeated. This approach can be used either to verify whether some set of space pruning constraints can prune with discrimination or to generate solutions directly. Schedules can be represented as trajectories through a Cartesian space. Under the objective criteria of Minimum maximum Lateness family of "good" schedules (trajectories) are geometric neighbors (reside with some "tube") in this space. This second method of generating solutions takes advantage of this adjacency by pruning the space from the outside in thus converging gradually upon this "tube." One the average this methods significantly outperforms an array of the Priority Dispatch rules when the object criteria is that of Minimum Maximum Lateness. It also compares favorably with a recent relaxation procedure.
Resumo:
2006
Resumo:
FUELCON is an expert system in nuclear engineering. Its task is optimized refueling-design, which is crucial to keep down operation costs at a plant. FUELCON proposes sets of alternative configurations of fuel-allocation; the fuel is positioned in a grid representing the core of a reactor. The practitioner of in-core fuel management uses FUELCON to generate a reasonably good configuration for the situation at hand. The domain expert, on the other hand, resorts to the system to test heuristics and discover new ones, for the task described above. Expert use involves a manual phase of revising the ruleset, based on performance during previous iterations in the same session. This paper is concerned with a new phase: the design of a neural component to carry out the revision automatically. Such an automated revision considers previous performance of the system and uses it for adaptation and learning better rules. The neural component is based on a particular schema for a symbolic to recurrent-analogue bridge, called NIPPL, and on the reinforcement learning of neural networks for the adaptation.