963 resultados para grass weeds
Resumo:
Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Brachiaria decumbens Stapf. e Brachiaria brizantha (Hochst.) Stapf., estudaram-se correlações entre a área foliar real (Sf) e parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as equações, exponenciais, geométricas ou lineares simples, permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de B. decumbens pode ser feita pela fórmula Sf = 0,9810 x (C x L), ou seja, 98,10% do produto entre o comprimento ao longo da nervura principal e a largura máxima, enquanto que, para a B. brizantha a estimativa da área foliar pode ser feita pela fórmula SF = 0,7468 x (C x L), ou seja 74,68% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.
Resumo:
Objetivou-se neste trabalho estudar a fitossociologia de comunidades de plantas daninhas de canaviais colhidos no sistema mecanizado, sem queima prévia da palha, e a similaridade entre talhões quanto à composição de espécies. Os levantamentos foram realizados em 28 talhões comerciais na região de Ribeirão Preto-SP. em cada talhão foram demarcadas áreas de coleta e avaliação, na proporção de duas por hectare, mantidas sem controle, e que serviram de local para as amostragens de plantas daninhas. As amostragens foram feitas com quadrados vazados (0,5 x 0,5 m), lançados aleatoriamente duas vezes em cada uma das áreas. Essas amostragens foram realizadas determinando-se a densidade e a biomassa específica aos 120 dias após o corte da cana. Cyperus rotundus foi a principal espécie, destacando-se quanto aos valores de importância relativa (IR). As plantas dicotiledôneas anuais de propagação por sementes também se destacaram, dentre as quais diversas espécies das famílias Euphorbiaceae e Convolvulaceae. em contrapartida, as gramíneas tradicionais de áreas de cana colhida queimada tiveram pouco destaque. O índice de Shannon (H) de diversidade de espécies das comunidades variou de 0 a 1,61, e o índice de similaridade entre os talhões (S) foi muito variável. A maioria das espécies ou grupo de espécies apresentou padrão agregado (V/m > 1,00), com valores relativamente altos de índice de agregação (V/m). Entretanto, na maioria dos casos, Cyperus rotundus e as Convolvulaceas apresentaram os maiores índices.
Resumo:
Dois experimentos foram conduzidos em casa de vegetação da Universidade Estadual de Maringá (UEM)-PR, objetivando desenvolver metodologia alternativa para avaliar a absorção foliar e radicular de herbicidas. O delineamento experimental utilizado foi o inteiramente casualizado com 11 e 5 tratamentos para os solos arenoso e argiloso, respectivamente, ambos os experimentos com quatro repetições, constituídos por plantas de B. plantaginea em dois estádios. O herbicida atrazine foi aplicado nas doses de 2,5 e 3,0 kg ha¹ em solos arenoso e argiloso, utilizando um pulverizador costal pressurizado por CO2. Os tratamentos foram constituídos por plantas protegidas com canudos plásticos em solo descoberto e plantas desprotegidas em solo coberto com papel-alumínio, associadas a condições de solo seco e úmido, ou em ambas as condições, acrescidas de irrigação de 20 mm apenas ao solo após aplicação. A absorção foliar da atrazine foi eficiente no controle de B. plantaginea com duas a três folhas em solo arenoso e argiloso, ao contrário do estádio de quatro a cinco folhas, onde houve necessidade de associar os efeitos da absorção foliar e radicular para se obter controle satisfatório. A irrigação de 20 mm ampliou o controle da absorção radicular de B. plantaginea em diferentes estádios de plantas, solo e umidade do solo. A metodologia apresentou-se viável como ferramenta alternativa para avaliação da absorção foliar e radicular de herbicidas, no controle de gramíneas em estádio inicial de desenvolvimento.
Resumo:
Currently Brazil is one of the leading paper and pulp producers in the world market, where Sao Paulo State boasts the greatest production. Because of the pulp prices falling in the world market and the low costs of a second coppice rotation, two experiments (started May and December, 2000) were conducted to evaluate the effects of weeds and of weed-free periods (0, 3, 6, 9, 12, 15 and 18 months) on the growth of Eucalyptus grandis second coppice plants. The field trials were set up in a randomized block design with four replicates and the experimental plots consisted of three rows of fve plants. The December weed community was composed mainly of Brachiaria decumbens (Surinam grass) and Panicum maximum (Guinea grass) and the May weed community was composed mainly by B. decumbens and Digitaria insularis (Sour-grass). Weeds had a low negative influence on growth, diameter development and macronutrients content of E. grandis second coppice plants. In both experiments, slight reductions in growth were observed only between the fully weeded and weed-free periods, after 18 months.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
The influence of different light regimes on the germination of Australian and English populations of Phalaris paradoxa L. (awned canary-grass) seed was investigated to determine the impact of changing tillage practices on weed infestation. Seeds of all biotypes were highly viable, but differed in levels of innate dormancy (26-99%). In one experiment seed from a single Australian biotype, either enclosed in the spikelet glumes or having the spikelet glumes removed, were exposed to nine light treatments. Germination was stimulated by red and white light, but was inhibited by far-red light. Time to 50%, germination was less for seed enclosed in the spikelet glumes than for naked caryopses, although the final percentage of seed germinating when still enclosed in the spikelet glumes was significantly lower than for naked caryopses. In another experiment, six Australian and English biotypes with varying dormancy characteristics were exposed to eight light treatments. Red light did not stimulate germination in the deeply dormant biotype, however stimulated all other biotypes. Germination in darkness was below 20% in all biotypes except for one where germination was 51%. To overcome dormancy seeds were imbibed and placed in darkness at 16degreesC for either 7 or 14 days prior to exposure to red or white light for a single 15-min period. Dormancy in all biotypes was overcome indicating that a period of burial may decrease the dormancy level and increase seed sensitivity to light. This increased light sensitivity suggests that exposure to light during tillage may stimulate germination in P. paradoxa seed.
Resumo:
Emergence and persistence characteristics of Phalaris paradoxa seeds in no- and minimum-till situations and at different burial depths were studied in a sub-tropical environment. Three experiments were carried out using naturally shed seeds. In the first experiment, seedlings emerged from May through to September each year, although the majority of seedlings emerged in July. In the second experiment with greater seed density, cultivation in March of each year stimulated seedling emergence, altered the periodicity of emergence and accelerated the decline of seeds in the seedbank compared with plots that received no cultivation. The majority of seedlings in the cultivated plots emerged in May whereas the majority of seedlings in the undisturbed plots emerged in July. Emergence accounted for only 4-19% of the seedbank in both experiments over 2 years. Seed persistence was short in both field experiments, with less than 1% remaining 2 years after seed shed. In the third experiment, burial depth and soil disturbance significantly influenced seedling emergence and persistence of seed. Seedlings emerged most from seed mixed in the top 10 cm when subjected to annual soil disturbance, and from seed buried at 2.5 and 5.0 cm depths in undisturbed soil. Emergence was least from seed on the soil surface, and buried at 10 and 15 cm depths in undisturbed soil. Seeds persisted longest when shed onto the soil surface and persisted least when the soil was tilled. These results suggest that strategic cultivation may be a useful management tool, as it will alter the periodicity of emergence allowing use of more effective control options and will deplete the soil seedbank more rapidly.
Resumo:
Neste trabalho estudou-se a eficiência dos herbicidas Herbipec 500 FL (s.a. Clortolurão) e Dopler Super (s.a. Diclofope-Metilo+Fenoxaprope-P-Etilo+Mefenepir-Dietilo) no controlo, em pós-emergência de infestantes Monocotiledóneas, e na produção de grão e suas componentes, na cultura do trigo mole em sementeira directa, combinando doses inferiores às recomendadas pelos fabricantes. Os ensaios decorreram nos anos agrícolas de 2006/2007 e 2007/2008, na Herdade do Louseiro no concelho de Évora e na Herdade da Revilheira no concelho de Reguengos de Monsaraz, respectivamente. Na experimentação efectuou-se o estudo dos dois herbicidas, com 3 níveis cada, correspondentes a nove tratamentos. O delineamento experimental foi em blocos casualizados com quatro repetições cada. Verificou-se uma maior eficiência no controlo das plantas infestantes de Lolium rigidum Gaud. e de Juncus bufonius L. e, consequentemente, um maior número de grãos e uma produção de grão de trigo elevada com 2 litros ha-l de Herbipec 500 FL e 0,5 litro ha-1 de Dopler Super. ABSTRACT: The purpose of this work was to study the efficiency of the herbicides Herbipec 500 FL (a.i. chlorotoluron) and Dopler Super (a.i. diclofop-methyl + fenoxaprop-P-ethyl + mefenpyr-diethyl) to control grass weeds at post-emergence in no-till bread wheat and consequently to do the evaluation of potential grain yield combining reduced doses to the recommended ones by the manufacturers. The trials were carried out over two growing seasons (2006/2007 and 2007/2008) on the farm "Revilheira" and on a private farm "Louseiro", both in the district of Évora. Trials to study effects of three doses of a two herbicides, with three levels each, corresponding to nine treatments were executed. The experimental design was a randomized block with four replications each. The results showed a great efficiency and grain yield wheat with the mixture with 2 l ha-1 Herbipec 500 FL and 0,5 1 ha-1 Dopler Super to controlling Lolium spp. and Juncus bufonius L..
Resumo:
2015
Resumo:
Sorghum, pearl millet, and Brachiaria ruziziensis have similar characteristics which have led to their use for mulch formation in no-till systems. This study was carried out to evaluate the potential of these three species as straw suppliers to suppress weed emergence. Initial findings led to the conclusion that both pearl millet and Brachiaria ruziziensis have similar or superior potential as weed suppressors, compared to sorghum straw, a species with recognized allelopathic potential. Subsequently, new trials were conducted under greenhouse conditions by sowing weed species in pots, followed by covering of the soil with the straw under evaluation. Independent experiments were conducted for Euphorbia heterophylla and Bidens pilosa. In each experiment, the factors analyzed were type of straw (pearl millet and B. ruziziensis), amount of straw (equivalent to 4 and 8 t ha-1 dry mass) and irrigation method (surface and subsurface). Both pearl millet and B. ruziziensis have shown to be species that can be cultivated to produce straw with allelopathic potential. These effects were effective in suppressing the emergence or early growth of E. heterophylla and B. pilosa. There was no difference in the suppression of emergence of these species when the soil cover level was alternated between 4 and 8 t ha-1 dry mass.
Resumo:
Les invasions biològiques són produïdes per espècies transportades per l'home fora de la regió d'origen a altres regions on s'estableixen i expandeixen. Són actualment de les majors causes de perduda de biodiversitat, amb el canvi d'usos del sòl, tret rellevant en zones insulars. Comprendre mecanismes de competència amb les espècies autòctones és clau per gestionar el problema. L’experiment evidencia diferències de creixement de 7 plantes natives australianes (3 espècies d’eucaliptus, 3 espècies d’acàcia, 1 pasturatge natiu), competint intraespecífica (entre mateixa espècie) i interespecíficament (acàcies o eucaliptus convivint amb pasturatge natiu) plantejant tres tractaments (sense males herbes, males herbes i males herbes a posteriori) per definir la naturalesa de la interacció dels diferents tipus funcionals d'espècies. S’analitzen tendències temporals de creixement de plàntules, així com la supervivència. S’ha detectat una moderada correlació entre taxes de creixement d’espècies i mida de la llavor, (p ≈ 0.6), així com una correlació entre la supervivència i la humitat del sòl (p ≈ 0.5); efectes estacionals. A curt termini i en escenari de primavera la convivència amb males herbes reporta creixement nul. Tractaments sense males herbes, presenten major supervivència en escenaris en competència interespecífica. A llarg termini les espècies amb major supervivència són les que conviuen amb pasturatge natiu i sense males herbes, indicant un efecte beneficiós en espècies millor adaptades a la sequera (E. loxophleba).
Resumo:
Corn is planted in the Center West region of Brazil as a second crop, following soybeans or beans. Intercropping of Brachiaria species with corn as a second crop increases the mulching in the cropping system. This study aimed to evaluate the weeds infestation in soybeans following corn/forages intercrop, as a function of corn plant structure, forage species and density. Experiments were conducted in a completely randomized blocks design with four replications, in Ponta Porã and Dourados municipalities, Mato Grosso do Sul state, Brazil, in 2010/2011. Treatments consisted of three corn hybrids with distinct plant architectures intercropped with three forage species: Brachiaria ruziziensis, B. brizantha and B.decumbens, at five densities, and the resulting dry mass was maintained throughout the winter. During the following cropping season, forages were desiccated prior to planting soybeans, and the dry mass of weeds, dry mass of the mulching, soil coverage by weeds, and the broadleaf/grass weed species index (WPI) were determined 15 days after soybean emergence, submitted to an F-test, and analyzed either by regression or by multiple mean comparison, according to the nature of the data. When intercropping corn with species of Brachiaria, a reduction in the overall weeds infestation may always be expected; among the studied forage species, more problems with weeds may be anticipated in areas with a less competitive species, e.g. B.ruziziensis. Under the conditions of the trials, B.brizantha and B.decumbens were more capable of inhibiting the emergence of weed species in the winter.
Resumo:
Herbicidal potential of different plant aqueous extracts was evaluated against early seedling growth of rice weeds in pot studies. Plant aqueous extracts of sorghum (Sorghum bicolor), sunflower (Helianthus annuus), brassica (Brassica compestris), mulberry (Morris alba), eucalyptus (Eucalyptus camaldunensis), and winter cherry (Withania somnifera) at a spray volume of 18 L ha-1 each at the 2-4 leaf stage of rice weeds viz horse purslane (Trianthema portulacastrum) [broad-leaf], jungle rice (Echinochloa colona), and E. crus-galli (barnyard grass) [grasses] and purple nut sedge (Cyperus rotundus) and rice flat sedge (C. iria) [sedges]. The results showed significant interactive effects between plant aqueous extracts and the tested weed species for seedling growth attributes depicting that allelopathic inhibition was species-specific. Shoot and root length, lateral plant spread, biomass accumulation, and leaf chlorophyll contents in test species were all reduced by different extracts. The study suggested the suppressive potential of allelopathic plant aqueous extracts against rice weeds, and offered promise for their usefulness as a tool for weed management under field conditions.
Resumo:
The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.
Resumo:
Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).