993 resultados para grant applications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A potentiometric device based on interfacing a solid electrolyte oxygen ion conductor with a thin platinum film acts as a robust, reproducible sensor for the detection of hydrocarbons in high- or ultrahigh-vacuum environments. Sensitivities in the order of approximately 5 x 10(-10) mbar are achievable under open circuit conditions, with good selectivity for discrimination between n-butane on one hand and toluene, n-octane, n-hexane, and 1-butene on the other hand. The sensor's sensitivity may be tuned by operating under constant current (closed circuit) conditions; injection of anodic current is also a very effective means of restoring a clean sensing surface at any desired point. XPS data and potentiometric measurements confirm the proposed mode of sensing action: the steady-state coverage of Oa, which sets the potential of the Pt sensing electrode, is determined by the partial pressure and dissociative sticking probability of the impinging hydrocarbon. The principles established here provide the basis for a viable, inherently flexible, and promising means for the sensitive and selective detection of hydrocarbons under demanding conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased boating activities and new waterfront developments have contributed an estimated 3,000 dismantled, abandoned, junked, wrecked, derelict vessels to Florida coastal waters. This report outlines a method of siting and prioritizing derelict vessel removal using the Florida Keys as a test area. The data base was information on 240 vessels, obtained from Florida Marine Patrol files. Vessel location was plotted on 1:250,000 regional and 1:5,000 and 1:12,000 site maps. Type of vessel, length, hull material, engine, fuel tanks, overall condition, afloat and submerged characteristics, and accessibility, were used to derive parametric site indices of removal priority and removal difficulty. Results indicate 59 top priority cases which should be the focus of immediate clean up efforts in the Florida Keys. Half of these cases are rated low to moderate in removal difficulty; the remainder are difficult to remove. Removal difficulty is a surrogate for removal cost: low difficulty -low cost, high difficulty - high cost. The rating scheme offers coastal planners options of focusing removal operations either on (1) specific areas with clusters of high priority derelict vessels or on (2) selected targeted derelicts at various, specific locations. (PDF has 59 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anode floating voltage is predicted and investigated for silicon drift detectors (SDDs) with an active area of 5 mm(2) fabricated by a double-side parallel technology. It is demonstrated that the anode floating voltage increases with the increasing inner ring voltage, and is almost unchanged with the external ring voltage. The anode floating voltage will not be affected by the back electrode biased voltage until it reaches the full-depleted voltage (-50 V) of the SDD. Theoretical analysis and experimental results show that the anode floating voltage is equal to the sum of the inner ring voltage and the built-in potential between the p(+) inner ring and the n(+) anode. A fast checking method before detector encapsulation is proposed by employing the anode floating voltage along with checking the leakage current, potential distribution and drift properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high glass transition temperature polymer polyetherketone doped with disperse red 13 (DR13/PEK-c) has been prepared by the spin-coating method. Through in situ second-harmonic generation, the corona poling temperature was optimized by measuring the temperature dependence of the in situ second-harmonic generation signal intensity under the poling electric field. The linear electro-optic coefficients of the poled polymer films have been determined at 632.8 nm by using a simple interferometric technique. The polymer system was measured after 13 000 h, and found that it remained at 80% of its initial value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wearable WIMU (Wireless Inertial Measurement Unit) [1] system for sports applications based on Tyndall's 25mm mote technology [2] has been developed to identify tennis performance determining factors, giving coaches & players improved feedback [3, 4]. Multiple WIMUs transmit player motion data to a PC/laptop via a receiver unit. Internally the WIMUs consist of: an IMU layer with MEMS based sensors; a microcontroller/transceiver layer; and an interconnect layer with supplemental 70g accelerometers and a lithium-ion battery. Packaging consists of a robust ABS plastic case with internal padding, a power switch, battery charging port and status LED with Velcro-elastic straps that are used to attach the device to the player. This offers protection from impact, sweat, and movement of sensors which could cause degradation in device performance. In addition, an important requirement for this device is that it needs to be lightweight and comfortable to wear. Calibration ensures that misalignment of the accelerometer and magnetometer axes are accounted for, allowing more accurate measurements to be made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a 42.6 Gbit/s all-optical pattern recognition system which uses semiconductor optical amplifiers (SOAs). A circuit with three SOA-based logic gates is used to identify the presence of specific port numbers in an optical packet header.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel spectroscopic method, incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), has been modified and extended to measure absorption spectra in the near-ultraviolet with high sensitivity. The near-ultraviolet region extends from 300 to 400 nm and is particularly important in tropospheric photochemistry; absorption of near-UV light can also be exploited for sensitive trace gas measurements of several key atmospheric constituents. In this work, several IBBCEAS instruments were developed to record reference spectra and to measure trace gas concentrations in the laboratory and field. An IBBCEAS instrument was coupled to a flow cell for measuring very weak absorption spectra between 335 and 375 nm. The instrument was validated against the literature absorption spectrum of SO2. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably owing to the extremely weak absorption. The instrument was also applied to quantifying low concentrations of the short-lived radical, BrO, in the presence of strong absorption by Br2 and O3. A different IBBCEAS system was adapted to a 4 m3 atmosphere simulation chamber to record the absorption cross-sections of several low vapour pressure compounds, which are otherwise difficult to measure. Absorption cross-sections of benzaldehyde and the more volatile alkyl nitrites agree well with previous spectra; on this basis, the cross-sections of several nitrophenols are reported for the first time. In addition, the instrument was also used to study the optical properties of secondary organic aerosol formed following the photooxidation of isoprene. An extractive IBBCEAS instrument was developed for detecting HONO and NO2 and had a sensitivity of about 10-9 cm-1. This instrument participated in a major international intercomparison of HONO and NO2 measurements held in the EUPHORE simulation chamber in Valencia, Spain, and results from that campaign are also reported here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power consumption of wireless sensor networks (WSN) module is an important practical concern in building energy management (BEM) system deployments. A set of metrics are created to assess the power profiles of WSN in real world condition. The aim of this work is to understand and eventually eliminate the uncertainties in WSN power consumption during long term deployments and the compatibility with existing and emerging energy harvesting technologies. This paper investigates the key metrics in data processing, wireless data transmission, data sensing and duty cycle parameter to understand the system power profile from a practical deployment prospective. Based on the proposed analysis, the impacts of individual metric on power consumption in a typical BEM application are presented and the subsequent low power solutions are investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, Grant No. 07/CE/11147)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Body Sensor Network (BSN) technology is seeing a rapid emergence in application areas such as health, fitness and sports monitoring. Current BSN wireless sensors typically operate on a single frequency band (e.g. utilizing the IEEE 802.15.4 standard that operates at 2.45GHz) employing a single radio transceiver for wireless communications. This allows a simple wireless architecture to be realized with low cost and power consumption. However, network congestion/failure can create potential issues in terms of reliability of data transfer, quality-of-service (QOS) and data throughput for the sensor. These issues can be especially critical in healthcare monitoring applications where data availability and integrity is crucial. The addition of more than one radio has the potential to address some of the above issues. For example, multi-radio implementations can allow access to more than one network, providing increased coverage and data processing as well as improved interoperability between networks. A small number of multi-radio wireless sensor solutions exist at present but require the use of more than one radio transceiver devices to achieve multi-band operation. This paper presents the design of a novel prototype multi-radio hardware platform that uses a single radio transceiver. The proposed design allows multi-band operation in the 433/868MHz ISM bands and this, together with its low complexity and small form factor, make it suitable for a wide range of BSN applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of two mutually coupled identical single-mode semi-conductor lasers are theoretically investigated. For small separation and large coupling between the lasers, symmetry-broken one-colour states are shown to be stable. In this case the light output of the lasers have significantly different intensities whilst at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable two-colour states, where both single-mode lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. For low coupling but possibly large separation, the frequency of the relaxation oscillations of the freerunning lasers defines the dynamics. Chaotic and quasi-periodic states are identified and shown to be stable. For weak coupling undamped relaxation oscillations dominate where each laser is locked to three or more odd number of colours spaced by the relaxation oscillation frequency. It is shown that the instabilities that lead to these states are directly connected to the two colour mechanism where the change in the number of optical colours due to a change in the plane of oscillation. At initial coupling, in-phase and anti-phase one colour states are shown to emerge from “on” uncoupled lasers using a perturbation method. Similarly symmetry-broken one-colour states come from considering one free-running laser initially “on” and the other laser initially “off”. The mechanism that leads to a bi-stability between in-phase and anti-phase one-colour states is understood. Due to an equivariant phase space symmetry of being able to exchange the identical lasers, a symmetric and symmetry-broken variant of all states mentioned above exists and is shown to be stable. Using a five dimensional model we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-colour, symmetric and symmetry-broken two-colour, symmetric and symmetry-broken undamped relaxation oscillations, symmetric and symmetry-broken quasi-periodic, and symmetric and symmetry-broken chaotic states. As symmetry-broken states always exist in pairs, they naturally give rise to bi-stability. Several of these states show multistabilities between symmetric and symmetry-broken variants and among states. Three memory elements on the basis of bi-stabilities in one and two colour states for two coupled single-mode lasers are proposed. The switching performance of selected designs of optical memory elements is studied numerically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group IV materials such as silicon nanocrystals (Si NCs) and carbon quantum dots (CQDs) have received great attention as new functional materials with unique physical/chemical properties that are not found in the bulk material. This thesis reports the synthesis and characterisation of both types of nanocrystal and their application as fluorescence probes for the detection of metal ions. In chapter 2, a simple method is described for the size controlled synthesis of Si NCs within inverse micelles having well defined core diameters ranging from 2 to 6 nm using inert atmospheric synthetic methods. In addition, ligands with different molecular structures were utilised to reduce inter-nanocrystal attraction forces and improve the stability of the NC dispersions in water and a variety of organic solvents. Regulation of the Si NCs size is achieved by variation of the surfactants and addition rates, resulting high quality NCs with standard deviations (σ = Δd/d) of less than 10 %. Large scale production of highly mondisperse Si NC was also successfully demonstrated. In chapter 3, a simple solution phase synthesis of size monodisperse carbon quantum dots (CQDs) using a room temperature microemulsion strategy is demonstrated. The CQDs are synthesized in reverse micelles via the reduction of carbon tetrachloride using a hydride reducing agent. CQDs may be functionalised with covalently attached alkyl or amine monolayers, rendering the CQDs dispersible in wide range of polar or non-polar solvents. Regulation of the CQDs size was achieved by utilizing hydride reducing agents of different strengths. The CQDs possess a high photoluminescence quantum yield in the visible region and exhibit excellent photostability. In chapter 4, a simple and rapid assay for detection of Fe3+ ions was developed, based on quenching of the strong blue-green Si NC photoluminescence. The detection method showed a high selectivity, with only Fe3+ resulting in strong quenching of the fluorescence signal. No quenching of the fluorescence signal was induced by Fe2+ ions, allowing for solution phase discrimination between the same ion in different charge states. The optimised sensor system showed a sensitive detection range from 25- 900 μM and a limit of detection of 20.8 μM