102 resultados para glucanase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xyloglucan is a major structural polysaccharide of the primary (growing) cell wall of higher plants. It consists of a cellulosic backbone (beta-1,4-linked glucosyl residues) that is frequently substituted with side chains. This report describes Aspergillus nidulans strain A773 recombinant secretion of a dimeric xyloglucan-specific endo-beta-1,4-glucanohydrolase (XegA) cloned from Aspergillus niveus. The ORF of the A. niveus xegA gene is comprised of 714 nucleotides, and encodes a 238 amino acid protein with a calculated molecular weight of 23.5 kDa and isoelectric point of 4.38. The optimal pH and temperature were 6.0 and 60 degrees C, respectively. XegA generated a xyloglucan-oligosaccharides (XGOs) pattern similar to that observed for cellulases from family GH12, i.e., demonstrating that its mode of action includes hydrolysis of the glycosidic linkages between glucosyl residues that are not branched with xylose. In contrast to commercial lichenase, mixed linkage beta-glucan (lichenan) was not digested by XegA, indicating that the enzyme did not cleave glucan beta-1,3 or beta-1,6 bonds. The far-UV CD spectrum of the purified enzyme indicated a protein rich in beta-sheet structures as expected for GH12 xyloglucanases. Thermal unfolding studies displayed two transitions with mid-point temperatures of 51.3 degrees C and 81.3 degrees C respectively, and dynamic light scattering studies indicated that the first transition involves a change in oligomeric state from a dimeric to a monomeric form. Since the enzyme is a predominantly a monomer at 60 degrees C. the enzymatic assays demonstrated that XegA is more active in its monomeric state. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurde die erste β-1,3-Glucanase aus Delftia beschrieben. Es konnte gezeigt werden, dass das Enzym unter anderem gegen das nur schwer zu hydrolysierende Exopolysaccharid aus Pediococcus parvulus wirkte. rnrnIm Einzelnen wurde zunächst das Exopolysaccharid aus Pediococcus parvulus B399 aus einem eigens zusammengestellten β-Glucan-Synthesemedium (Medium M) isoliert und gereinigt. Anschließend erfolgte eine umfassende Charakterisierung des Biopolymers. Hierzu gehörten neben der sauren Hydrolyse zur Bestimmung der Monomerzusammensetzung des Polymers, auch spektroskopische Methoden, darunter 1H und 13C-NMR. Mithilfe der NMR-Spektroskopie konnte die Struktur des Exopolysaccharids aus Pediococcus parvulus B399 bestimmt werden. Es handelte sich hierbei ebenfalls um ein β-1,3(1,2)-Glucan, wie es bereits für Pediococcus parvulus 2.6 beschrieben wurde. Darüber hinaus wurde erstmals ein ATR-FTIR-Spektrum für ein Exopolysaccharid aus Pediokokken gezeigt. Über GPC-Messungen konnte auch die molekulare Größe des β-1,3(1,2)-Glucans aus Pediococcus parvulus B399 bestimmt werden. Es wurde nachgewiesen, dass sich das Exopolysaccharid bei Anzucht in Medium M aus einer hochmolekularen Fraktion (5*106 g/mol) und vier niedermolekularen Fraktionen (347; 818; 10048 und 20836 g/mol) zusammensetzte. Neben der strukturellen Charakterisierung, wurde das Exopolysaccharid auch rheologisch untersucht. Dabei konnte festgestellt werden, dass es sich durch seine schwach gelbildenen Eigenschaften auch zum Einsatz in der Lebensmittelindustrie als Stabilisator, Fettersatzmittel oder ähnliches eignen würde. Die erwähnte gelbildende Netzwerkstruktur konnte für das Exopolysaccharid aus Pediococcus parvulus B399 auch erstmals im AFM bestätigt werden. rnEin weiterer Teil der Arbeit umfasste ein breites Screeningverfahren nach einem geeigneten Organismus, der das Exopolysaccharid aus Pediococcus parvulus B399 effektiv hydrolysieren sollte. Aus einer Anreicherungskultur des Termitendarms (Wenzel et al., 2002), konnte Delftia sp. MV01 isoliert werden. Dieser Organismus produzierte bei Wachstum in β glucanhaltigem Medium (Exopolysaccharid aus Pediococcus parvulus B399, sowie weitere kommerziell erhältliche β-1,3-Glucane) eine Glucanase, die in folgenden Schritten konventionell gereinigt und charakterisiert wurde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in (1→3,1→4)-β-D-glucan endohydrolase (EC 3.2.1.73) protein levels were investigated in segments from second leaves of wheat (Triticum aestivum L.). The abundance of the enzyme protein markedly increased when leaf segments were incubated in the dark whereas the enzyme rapidly disappeared when dark-incubated segments were illuminated or fed with sucrose. Addition of cycloheximide (CHI) to the incubation medium led to the disappearance of previously synthesized (1→3,1→4)-β-glucanase and suppressed the dark-induced accumulation indicating that the enzyme was rather unstable. The degradation of (1→3,1→4)-β-glucanase was analyzed without the interference of de-novo synthesis in intercellular washing fluid (IWF). The loss of the enzyme protein during incubation of IWF (containing naturally present peptide hydrolases) indicated that the stability increased from pH 4 to pH 7 and that an increase in the temperature from 25 to 35 °C considerably decreased the stability. Chelating divalent cations in the IWF with o-phenanthroline also resulted in a lowered stability of the enzyme. A strong temperature effect in the range from 25 to 35 °C was also observed in wheat leaf segments. Diurnal changes in (1→3,1→4)-β-glucanase activity were followed in intact second leaves from young wheat plants. At the end of the dark period, the activity was high but constantly decreased during the light phase and remained low if the light period was extended. Activity returned to the initial level during a 10-h dark phase. During a diurnal cycle, changes in (1→3,1→4)-β-glucanase activity were associated with reciprocal changes in soluble carbohydrates. The results suggest that the synthesis and the proteolytic degradation of an apoplastic enzyme may rapidly respond to changing environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two cDNAs clones (Cel1 and Cel2) encoding divergent endo-β-1,4-glucanases (EGases) have been isolated from a cDNA library obtained from ripe strawberry (Fragaria x ananassa Duch) fruit. The analysis of the amino acid sequence suggests that Cel1 and Cel2 EGases have different secondary and tertiary structures and that they differ in the presence of potential N-glycosylation sites. By in vitro translation we show that Cel1 and Cel2 bear a functional signal peptide, the cleavage of which yields mature proteins of 52 and 60 kD, respectively. Phylogenetic analysis revealed that the Cel2 EGase diverged early in evolution from other plant EGases. Northern analysis showed that both EGases are highly expressed in fruit and that they have different temporal patterns of accumulation. The Cel2 EGase was expressed in green fruit, accumulating as the fruit turned from green to white and remaining at an elevated, constant level throughout fruit ripening. In contrast, the Cel1 transcript was not detected in green fruit and only a low level of expression was observed in white fruit. The level of Cel1 mRNA increased gradually during ripening, reaching a maximum in fully ripe fruit. The high levels of Cel1 and Cel2 mRNA in ripe fruit and their overlapping patterns of expression suggest that these EGases play an important role in softening during ripening. In addition, the early expression of Cel2 in green fruit, well before significant softening begins, suggests that the product of this gene may also be involved in processes other than fruit softening, e.g. cell wall expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA (Cel1) encoding an endo-1,4-β-glucanase (EGase) was isolated from ripe fruit of strawberry (Fragaria × ananassa). The deduced protein of 496 amino acids contains a presumptive signal sequence, a common feature of cell wall-localized EGases, and one potential N-glycosylation site. Southern- blot analysis of genomic DNA from F. × ananassa, an octoploid species, and that from the diploid species Fragaria vesca indicated that the Cel1 gene is a member of a divergent multigene family. In fruit, Cel1 mRNA was first detected at the white stage of development, and at the onset of ripening, coincident with anthocyanin accumulation, Cel1 mRNA abundance increased dramatically and remained high throughout ripening and subsequent fruit deterioration. In all other tissues examined, Cel1 expression was invariably absent. Antibodies raised to Cel1 protein detected a protein of 62 kD only in ripening fruit. Upon deachenation of young white fruit to remove the source of endogenous auxins, ripening, as visualized by anthocyanin accumulation, and Cel1 mRNA accumulation were both accelerated. Conversely, auxin treatment of white fruit repressed accumulation of both Cel1 mRNA and ripening. These results indicate that strawberry Cel1 is a ripening-specific and auxin-repressed EGase, which is regulated during ripening by a decline in auxin levels originating from the achenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Class I isoforms of β-1,3-glucanases (βGLU I) and chitinases (CHN I) are antifungal, vacuolar proteins implicated in plant defense. Tobacco (Nicotiana tabacum L.) βGLU I and CHN I usually exhibit tightly coordinated developmental, hormonal, and pathogenesis-related regulation. Both enzymes are induced in cultured cells and tissues of cultivar Havana 425 tobacco by ethylene and are down-regulated by combinations of the growth hormones auxin and cytokinin. We report a novel pattern of βGLU I and CHN I regulation in cultivar Havana 425 tobacco pith-cell suspensions and cultured leaf explants. Abscisic acid (ABA) at a concentration of 10 μm markedly inhibited the induction of βGLU I but not of CHN I. RNA-blot hybridization and immunoblot analysis showed that only class I isoforms of βGLU and CHN are induced in cell culture and that ABA inhibits steady-state βGLU I mRNA accumulation. Comparable inhibition of β-glucuronidase expression by ABA was observed for cells transformed with a tobacco βGLU I gene promoter/β-glucuronidase reporter gene fusion. Taken together, the results strongly suggest that ABA down-regulates transcription of βGLU I genes. This raises the possibility that some of the ABA effects on plant-defense responses might involve βGLU I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the molecular cloning of the first beta-1,3 glucanase from animal tissue. Three peptide sequences were obtained from beta-1,3 glucanase that had been purified from eggs of the sea urchin Strongylocentrotus purpuratus and the gene was cloned by PCR using oligonucleotides deduced from the peptide sequences. The full-length cDNA shows a predicted enzyme structure of 499 aa with a hydrophobic signal sequence. A 3.2-kb message is present in eggs, during early embryogenesis, and in adult gut tissue. A polyclonal antibody to the native 68-kDa enzyme recognizes a single band during early embryogenesis that reappears in the adult gut, and recognizes a 57-kDa fusion protein made from a full-length cDNA clone for beta-1,3 glucanase. The identity of this molecule as beta-1,3 glucanase is confirmed by sequence homology, by the presence of all three peptide sequences in the deduced amino acid sequence, and by the recognition of the bacterial fusion protein by the antibody directed against the native enzyme. Data base searches show significant homology at the amino acid level to beta-1,3 glucanases from two species of bacteria and a clotting factor from the horseshoe crab. The homology with the bacteria is centered in a 304-aa region in which there are seven scattered regions of high homology between the four divergent species. These four species were also found to have two homologous regions in common with more distantly related plant, fungal, and bacterial proteins. A global phylogeny based on these regions strongly suggests that the glucanases are a very ancient family of genes. In particular, there is an especially deep split within genes taken from the bacterial genus Bacillus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The codon usage of a hybrid bacterial gene encoding a thermostable (1,3-1,4)-beta-glucanase was modified to match that of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene. Both the modified and unmodified bacterial genes were fused to a DNA segment encoding the barley high-pI alpha-amylase signal peptide downstream of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene promoter. When introduced into barley aleurone protoplasts, the bacterial gene with adapted codon usage directed synthesis of heat stable (1,3-1,4)-beta-glucanase, whereas activity of the heterologous enzyme was not detectable when protoplasts were transfected with the unmodified gene. In a different expression plasmid, the codon modified bacterial gene was cloned downstream of the barley high-pI alpha-amylase gene promoter and signal peptide coding region. This expression cassette was introduced into immature barley embryos together with plasmids carrying the bar and the uidA genes. Green, fertile plants were regenerated and approximately 75% of grains harvested from primary transformants synthesized thermostable (1,3-1,4)-beta-glucanase during germination. All three trans genes were detected in 17 progenies from a homozygous T1 plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three native freshwater crayfish Cherax species are farmed in Australia namely; Redclaw (Cherax quadricarinatus), Marron (C. tenuimanus), and Yabby (C. destructor). Lack of appropriate data on specific nutrient requirements for each of these species, however, has constrained development of specific formulated diets and hence current use of over-formulated feeds or expensive marine shrimp feeds, limit their profitability. A number of studies have investigated nutritional requirements in redclaw that have focused on replacing expensive fish meal in formulated feeds with non-protein, less expensive substitutes including plant based ingredients. Confirmation that freshwater crayfish possess endogenous cellulase genes, suggests their potential ability to utilize complex carbohydrates like cellulose as nutrient sources in their diet. To date, studies have been limited to only C. quadricarinatus and C. destructor and no studies have compared the relative ability of each species to utilize soluble cellulose in their diets. Individual feeding trials of late-juveniles of each species were conducted separately in an automated recirculating culture system over 12 week cycles. Animals were fed either a test diet (TD) that contained 20% soluble cellulose or a reference diet (RD) substituted with the same amount of corn starch. Water temperature, conductivity and pH were maintained at constant and optimum levels for each species. Animals were fed at 3% of their body weight twice daily and wet body weight was recorded bi-weekly. At the end of experiment, all animals were harvested, measured and midgut gland extracts assayed for alpha-amylase, total protease and cellulase activity levels. After the trial period, redclaw fed with RD showed significantly higher (p<0.05) specific growth rate (SGR) compare with animals fed the TD while SGR of marron and yabby fed the two diets were not significantly different (p<0.05). Cellulase expression levels in redclaw were not significantly different between diets. Marron and yabby showed significantly higher cellulase activity when fed the RD. Amylase and protease activity in all three species were significantly higher in the animals fed with RD (Table 1). These results indicate that test animals of all species can utilize starch better than dietary soluble cellulose in their diet and inclusion of 20% soluble cellulose in diets does not appear to have any significant negative effect on their growth rate but survival was impacted in C. quadricarinatus while not in C. tenuimanus or C. destructor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study evaluated the effect of soluble dietary cellulose on growth, survival and digestive enzyme activity in three endemic, Australian freshwater crayfish species (redclaw: Cherax quadricarinatus, marron: C. tenuimanus, yabby: C. destructor). Separate individual feeding trials were conducted for late-stage juveniles from each species in an automated recirculating freshwater, culture system. Animals were fed either a test diet (TD) that contained 20% soluble cellulose or a reference diet (RD) substituted with the same amount of corn starch, over a 12 week period. Redclaw fed with RD showed significantly higher (p<0.05) specific growth rates (SGR) compared with animals fed the TD, while SGR of marron and yabby fed the two diets were not significantly different. Expressed cellulase activity levels in redclaw were not significantly different between diets. Marron and yabby showed significantly higher cellulase activity when fed the RD (p<0.05). Amylase and protease activity in all three species were significantly higher in the animals fed with RD (p<0.05). These results indicate that test animals of all three species appear to utilize starch more efficiently than soluble dietary cellulose in their diet. The inclusion of 20% soluble cellulose in diets did not appear, however, to have a significant negative effect on growth rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saccharification of sugarcane bagasse pretreated at the pilot-scale with different processes (in combination with steam-explosion) was evaluated. Maximum glucan conversion with Celluclast 1.5 L (15–25 FPU/g glucan) was in the following order: glycerol/HCl > HCl > H2SO4 > NaOH, with the glycerol system achieving ∼100% conversion. Surprisingly, the NaOH substrate achieved optimum saccharification with only 8 FPU/g glucan. Glucan conversions (3.6–6%) obtained with mixtures of endo-1,4-β-glucanase (EG) and β-glucosidase (βG) for the NaOH substrate were 2–6 times that of acid substrates. However, glucan conversions (15–60%) obtained with mixtures of cellobiohydrolase (CBH I) and βG on acidified glycerol substrate were 10–30% higher than those obtained for NaOH and acid substrates. The susceptibility of the substrates to enzymatic saccharification was explained by their physical and chemical attributes. Acidified glycerol pretreatment offers the opportunity to simplify the complexity of enzyme mixtures required for saccharification of lignocellulosics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The project evaluated potential of soluble cellulose as a cheap feed ingredient for major farmed Australian freshwater crayfish species testing their growth performance, digestive enzyme activity and digestive enzyme gene expression patterns. Test animals showed an innate capacity to utilise a range of carbohydrate sources including complex structural polysaccharides. Results suggest that more plant-derived ingredient can be incorporated in formulated low-cost feeds for the culture industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wood-degrading fungi are able to degrade a large range of recalcitrant pollutants which resemble the lignin biopolymer. This ability is attributed to the production of lignin-modifying enzymes, which are extracellular and non-specific. Despite the potential of fungi in bioremediation, there is still an understanding gap in terms of the technology. In this thesis, the feasibility of two ex situ fungal bioremediation methods to treat contaminated soil was evaluated. Treatment of polycyclic aromatic hydrocarbons (PAHs)-contaminated marsh soil was studied in a stirred slurry-phase reactor. Due to the salt content in marsh soil, fungi were screened for their halotolerance, and the white-rot fungi Lentinus tigrinus, Irpex lacteus and Bjerkandera adusta were selected for further studies. These fungi degraded 40 - 60% of a PAH mixture (phenanthrene, fluoranthene, pyrene and chrysene) in a slurry-phase reactor (100 ml) during 30 days of incubation. Thereafter, B. adusta was selected to scale-up and optimize the process in a 5 L reactor. Maximum degradation of dibenzothiophene (93%), fluoranthene (82%), pyrene (81%) and chrysene (83%) was achieved with the free mycelium inoculum of the highest initial biomass (2.2 g/l). In autoclaved soil, MnP was the most important enzyme involved in PAH degradation. In non-sterile soil, endogenous soil microbes together with B. adusta also degraded the PAHs extensively, suggesting a synergic action between soil microbes and the fungus. A fungal solid-phase cultivation method to pretreat contaminated sawmill soil with high organic matter content was developed to enhance the effectiveness of the subsequent soil combustion. In a preliminary screening of 146 fungal strains, 28 out of 52 fungi, which extensively colonized non-sterile contaminated soil, were litter-decomposing fungi. The 18 strains further selected were characterized by their production of lignin-modifying and hydrolytic enzymes, of which MnP and endo-1,4-β-glucanase were the main enzymes during cultivation on Scots pine (Pinus sylvestris) bark. Of the six fungi selected for further tests, Gymnopilus luteofolius, Phanerochaete velutina, and Stropharia rugosoannulata were the most active soil organic matter degraders. The results showed that a six-month pretreatment of sawmill soil would result in a 3.5 - 9.5% loss of organic matter, depending on the fungus applied. The pretreatment process was scaled-up for a 0.56 m3 reactor, in which perforated plastic tubes filled with S. rugosoannulata growing on pine bark were introduced into the soil. The fungal pretreatment resulted in a soil mass loss of 30.5 kg, which represents 10% of the original soil mass (308 kg). Despite the fact that Scots pine bark contains several antimicrobial compounds, it was a suitable substrate for fungal growth and promoter of the production of oxidative enzymes, as well as an excellent and cheap natural carrier of fungal mycelium. This thesis successfully developed two novel fungal ex situ bioremediation technologies and introduce new insights for their further full-scale application. Ex situ slurry-phase fungal reactors might be applied in cases when the soil has a high water content or when the contaminant bioavailability is low; for example, in wastewater treatment plants to remove pharmaceutical residues. Fungal solid-phase bioremediation is a promising remediation technology to ex situ or in situ treat contaminated soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipopolysaccharide and beta-1,3-glucan-binding protein (LGBP) play a crucial role in the innate immune response of invertebrates as a pattern recognition protein (PRP). The scallop LGBP gene was obtained from Chlamys farreri challenged by Vibrio anguillarum by randomly sequencing cDNA clones from a whole body cDNA library, and by fully sequencing a clone with homology to known LGBP genes. The scallop LGBP consisted of 1876 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 440 amino acids with the estimated molecular mass of 47.16 kDa and a predicted isoelectric point of 5.095. The deduced amino acid sequence showed a high similarity to that of invertebrate recognition proteins from blue shrimp, black tiger shrimp, mosquito, freshwater crayfish, earthworms, and sea urchins, with conserved features including a potential polysaccharide-binding motif, a glucanase motif, and N-glycosylation sites. The temporal expression of LGBP genes in healthy and V. anguillarum-challenged C farreri scallop, measured by real-time semiquantitative reverse transcription polymerase chain reaction (PCR), showed that expression was up-regulated initially, followed by recovery as the stimulation cleared. Results indicated that scallop LGBP was a constitutive and inducible acute-phase protein that could play a critical role in scallop-pathogen interaction. (C) 2004 Elsevier B.V. All rights reserved.