997 resultados para glacial till


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During "Meteor" Cruise 6/1966 in the northwest Atlantic a systematic survey of the bottom topography of the southeast Greenland continental margin was undertaken. Eighty-seven profiles transverse to the shelf edge at distances of 3-4 nautical miles and two longitudinal profiles parallel to the coast were carried out with the ELAC Narrow Beam Echo-Sounder giving a reliable record of even steep slopes. On the basis of the echo soundings the topography and morphology of the continental shelf and slope are evaluated. A detailed bathymetric chart and a serial profile chart were designed as working material for the morphological research. These maps along with the original echograms are morphometrically evaluated. The analysis of the sea bottom features is the basis of a subsequent morphogenetical interpretation, verified and extended by means of interpretation of magnetic data and sediment analysis (grain size, roundness, lithology). The results of the research are expressed in a geomorphological map. The primary findings can be summarized as follows: 1) The southeast Greenland shelf by its bottom topography can be clearly designated as a glacially formed area. The glacial features of the shelf can be classified into two zones nearly parallel to the coast: glacial erosion forms on the inner shelf and glacial accumulation forms on the outer shelf. The inner shelf is characterized by the rugged and hummocky topography of ice scoured plains with clear west/east slope asymmetry. On the outer shelf three types of glacial accumulation forms can be recognized: ice margin deposits with clearly expressed terminal moraines, glacial till plains and glaciomarine outwash fans. Both zones of the shelf can be subdivided into two levels of relief. The ice scoured plains, with average depths of 240 meters (m), are dissected to a maximum depth of 1060 m (Gyldenloves Trough) by trough valleys, which are the prolongations of the Greenland fjords. The banks of the outer shelf, with an average depth of 180 m, surround glacial basins with a maximum depth of 670 meters. 2) The sediments of the continental shelf can be classified as glacial due to their grain size distribution and the degree of roundness of the gravel particles. The ice margin deposits on the outer shelf can be recognized by their high percentage of gravels. On the inner shelf a rock surface is suggested, intermittently covered by glacial deposits. In the shelf troughs fine-grained sediments occur mixed with gravels. 3) Topography and sediments show that the southeast Greenland shelf was covered by an ice sheet resting on the sea floor during the Pleistocene ice-age. The large end moraines along the shelf edge probably indicate the maximum extent of the Wurm shelf ice resting on the sea floor. The breakthroughs of the end moraines in front of the glacial basins suggest that the shelf ice has floated further seaward over the increasing depths. 4) Petrographically the shelf sediments consist of gneisses, granites and basalts. While gneisses and granites occire on the nearby coast, basalt is not known to exist here. Either this material has been drifted by icebergs from the basalt province to the north or exists on the southeast Greenland shelf itself. The last interpretation is supported bythe high portion of basalt contained in the sediment samples taken and the strong magnetic anomalies probably caused by basaltic intrusions. 5) A magnetic profile allows the recognition of two magnetically differing areas which approximately coincide with the glacial erosion and accumulation zones. The inner shelf shows a strong and variable magnetic field because the glacially eroded basement forms the sea floor. The outer shelf is characterized by a weak and homogenous magnetic field, as the magnetized basement lies at greater depthy, buried by a thick cover of glacial sediments. The strong magnetic anomalies of the inner shelf are probably caused by dike swarms, similar to those observed further to the north in the Kangerdlugssuaq Fjord region. This interpretation is supported by the high basalt content of the sediment samples and the rough topography of the ice scoured plains which correlates in general with the magnetic fluctuations. The dike structures of the basement have been differentially eroded by the shelf ice. 6) The continental slope, extending from the shelf break at 313 m to a depth of 1270 m with an average slope of 11°, is characterized by delta-shaped projections in front of the shelf basins, by marginal plateaus, ridges and hills, by canyons and slumping features. The projections could be identified as glaciomarine sediment fans. This conclusion is supported by the strong decrease of magnetic field intensity. The deep sea hills and ridges with their greater magnetic intensities have to be regarded as basement outcrops projecting through the glaciomarine sediment cover. The upper continental rise, sloping seaward at about 2°, is composed of wide sediment fans and slump material. A marginal depression on the continental rise running parallel to the shelf edge has been identified. In this depression bottom currents capable of erosion have been recorded. South of Cape Farvel the depression extends to the accumulation zone of the "Eirik" sedimentary ridge. 7) By means of a study of the recent marine processes, postglacial modification of the ice-formed relief can be postulated. The retention effect of the fjord troughs and the high velocity of the East Greenland stream prevents the glacial features from being buried by sediments. Bottom currents capable of active erosion have only been found in the marginal depression on the continental rise. In addition, at the time of the lowest glacio-eustatic sea level, the shelf bottom was not situated in the zone of wave erosion. Only on the continental slope and rise bottom currents, sediment slumps and turbidity currents have led to significant recent modifications. Considering these results, the geomorphological development of the southeast Greenland continental terrace can be suggested as follows: 1. initial formation of a "peneplain", 2. fluvial incision, 3. submergence, and finally 4. glacial modification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pollen analyses and 14C-datings were carried out on two late glacial profiles from Ruegen Island, Mecklenburg-Vorpommern at the southwestern Baltic coast. The palaeoclimatic and palaeoecologic interpretations were supported by carpological investigations. The organogenic deposits of the 'Hoelle' outcrop near Dwasieden Park were chosen because of their unique stratigraphic position, which according to PANZIG (1989), lay under a m3m-Glacial Till of the Mecklenburg Advance (W3). The results indicated that the initial phase of the late glacial sedimentation in a relatively small and asymmetrical lake basin (in comparison with the larger Nieder- and Credner lake to the southwest), probably had its origin in the older Alleroed (II a) after FIRBAS (1949). The basal clastic sediments were rapidly followed by peat deposits and later, due to a rising water table, by muds rich in organic matter. The area was covered with sparse Betula-(Pinus) forests having heliophilous late-glacial elements typical of the surrounding areas during the younger Alleroed (II b). With the climatic change to colder and drier conditions at the beginning of the Younger Dryas (III), the vegetation decreased and enhanced erosional processes led to the fill up of the depression with fine clastic sediments. The intense relief differences of the surroundings coupled with high water saturation in the sediments led to solifluction in the m3m-Glacial Till and its placement discordantly over the organogenic sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geological observations, using "free-diving" techniques (Figure I) were made in September, 1960 and March 1961 along two continuous profiles in the outer Kiel Harbor, Germany and at several other spot locations in the Western Baltic Sea. A distinct terrace, cut in Pleistocene glacial till, was found that was covered with varying amounts and types of recent deposits. Hand samples were taken of the sea-floor sediments and grainsize distribution determined for both the sediment as a whole and for its heavy mineral fraction. From the Laboratory and Field observations it was possible to recognize two distinct types of sand; Type I, Sand resulting from transportation over a long period of time and distance and Type 11, Sand resulting from little transportation and found today near to xvhere it was formed. Several criterea related to the agent of movement could be used to classify the nature of the sediment; (1) undisturbed (the sediment Cover of the Pleistocene Terrace is essentially undisturbed), (2) mixed by organisms, (3) transported by water movements (sediment found with ripple marks, etc., and (4) "Scoured" (the movement of individual particles of sediment from around larger boulders causes a slow downward movement or "Creeping" which is due to both the force of gravity and bottom currents. These observations and laboratory studies are discussed concerning their relationship to the formation of residual sediments, the direction of sand transportation, and the intensive erosion on the outer edge of the wave-cut platform found in this part of the Baltic Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stratigraphic position of the glacially transported 'Scholle' (large-size erratic block) at Schobüll near Husum (Schleswig-Holstein) is now considered to be Devonian rather than 'Rotliegendes'. The 'Scholle', consisting of red clay and dolomite, is overlain by red-colored till without any flint but with up to 90% carbonate clasts (containing 15% dolomite), which indicates an eastern Baltic origin. The relationship of the 'Scholle' with the glacial till also points to an eastern Baltic origin for it, with up to 1 000 km transport distance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report presents the results of stratigraphic analysis of the southwestern quadrant of the Cedar Hills Regional Landfill (CHRLF). My report was intended to incorporate the recent Area 8 borehole data into the pre-existing analyses. This analysis was conducted during the preparation of the Area 8 Hydrogeologic Report, but is my independent investigation and does not represent the opinion of UEC or their associates. The CHRLF, in Maple Valley, WA, south of Squak Mountain, is a municipal solid waste landfill that has been in operation since the 1960s. A network of borings, the product of previous investigations, exists for the study area. I utilized the compiled boring logs, previous investigations, and the recently acquired data to produce a series of interpretative cross-sections for the study area. I recognized 9 distinct stratigraphic units, including fill. My interpreted stratigraphic units are similar to those identified in previous investigations such as the Area 7 Hydrogeologic investigation (HDR Engineering and Associates, 2008). These units include pre-Olympia aged non-glacial alluvium, glacial alluvium, and glacial till. Additionally, younger, Vashon-aged deposits of glacial till, recessional outwash, recessional lacustrine, and ice-contact were observed. An isolated “till-like” deposit was observed below the Vashon till. This could possibly represent an older till as mapped by Sweet Edwards (1985) and Booth (1995). I cite the continuity of the lower contact of the Vashon till (Unit 5, Table 2) and the upper contact pre-Vashon non-glacial fluvial deposits (Unit 9, Table 2) as evidence that faults or other structural features do not offset the deposits in the study area. This conclusion supports the findings of the pre-existing body of work within the landfill property and the nearby Queen City Farms property.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sixth in a series, this bulletin further compiles the reports on completed research done for the Iowa State Highway Research Board under its Project HR-1, The loess and glacial till materials of Iowa; an investigation of their physical and chemical properties and techniques for processing them to increase their all-weather stability for road construction. The research, started in 1950, has been conducted by the Iowa Engineering Experiment Station at Iowa State University under its Project 283-S.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This bulletin is a further compilation of the reports on completed research done for the Iowa State Highway Research Board Project HR-1 The loess and glacial till materials of Iowa; an investigation of their physical and chemical properties and techniques for processing them to increase their all-weather stability for road construction. The research, started in 1950, was done by the Iowa Engineering Experiment Station at Iowa State University under its project 283-S. The project was supported by funds from the Iowa State Highway Commission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is the fourth publication in a series of compilations of the reports on research completed for the Iowa State Highway Commission. This research was done for the Iowa State Highway Research Board Project HR-1. The Loess and Glacial Till Materials of Iowa; an Investigation of Their Physical and Chemical Properties and Techniques for Processing Them to Increase Their All-Weather Stability for Road Construction. The research, started in 1950, was done by the Iowa Engineering Experiment Station under its project 283-S. The project was supported by funds from the Iowa State Highway Commission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is the fifth publication in a series of compilations of the reports on research completed for the Iowa State Highway Commission. This research was done for the Iowa State Highway Research Board Project HR-1, "The Loess and Glacial Till Materials of Iowa; an Investigation of Their Physical and Chemical Properties and Techniques for Processing Them to Increase Their All-Weather Stability for Road Construction." The research, started in 1950, was done by the Iowa Engineering Experiment Station under its project 283-S. The project was supported by funds from the Iowa State Highway Commission. The principal objectives of the project may be summed up as follows: 1. To determine by means of both field and laboratory studies the areal and stratigraphic variation in the physical and chemical properties of the loess and glacial till materials of Iowa. 2. To develop new equipment and methods for evaluating physical and chemical properties of soil where needed. 3. To correlate fundamental soil properties with the performance of soils in the highway structure. 4. To develop a scientific approach to the problem of soil stabilization based on the relationships between the properties of the soils and those of the admixtures. 5. To determine the manner in which the loess and glacial till materials of Iowa can be processed for optimum performance as highway embankments, sub-grades, base courses, and surface courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Dummer Complex extends 180 km along the Precambrian - Paleozoic contact from Tamworth to Lake Simcoe. It is composed of coarse, angular Paleozoic clasts in discontinuous, pitted, hummocky deposits. Deposits are usually separated by bare or boulder strewn bedrock, but have been found in the southern drumlinized till sheet. Dummer Complex deposits show rough alignment with ice-flow. Eskers cross-cut many of the deposits. Dummer sediment subfacies are defined on the basis of dominant coarse grain size and lithology, which relate directly to the underlying Paleozoic formation. Three subglacial tills are identified based on the degree of comminution and distance of transport; the immature facies of the Dummer Complex; the mature facies of the drumlinized till sheet and; the submature facies which is transitional. Carbonate geochemistry was used for till-bedrock correlation in various grain sizes. Of the 3 Paleozoic formations underlying the Dummer Complex, the Gull River Fm. is geochemically distinctive from the Bobcaygeon and Verulam Formations using Ca, Mg, Sr, Cu, Mn, Fe and Na. The Bobcaygeon Fm. and Verulam Fm. can be differentiated using Ca and the Sr/Ca ratio. The immature facies from 1.0 phi and finer is dominated by the non-carbonate, long distance transported component which decreases slightly downice. The submature till facies contains more long distance material than the immature facies. Sr and Mn can be used to correlate the Gull River immature till facies to the underlying bedrock the other subfacies could not be distinguished from each other or their respective source formation. This method proved to be ineffective for sediments with greater than 35% non-carbonate component, due to leaching of elements by the dissolving acid.The Dummer Complex is produced subglacially , as the compressional ice encounters the permeable Paleozoic carbonates. The increased shear strength of the ice and pore pressures in the carbonates results in the basal ice zones becoming debris ladden. Cleaner ice overrides the basal debris . laden dead ice which then acts as the glacier bed. During retreat, the Simcoe lobe stagnates as flow is cut-off by the Algonquin Highlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation aims to gain a better understanding of the glacial history of the Pine Point Mining district, Northwest Territories, by examining the sedimentological properties of the glacial sediments including, geochemical analysis, heavy mineral concentrate analysis, clast macro-­‐fabrics, pebble lithologies, and micromorphological investigation. Four till units were identified, and three were associated with identified erosional bedrock features and streamlined landforms in the area, indicating a minimum of three ice flow directions. Sedimentological properties suggest that these units were all Type-­B tectomict/mélange till, emplaced as part of a soft subglacial deformable bed. The lack of ice-­‐marginal advance and retreat sequences within the studied till, suggests the Middle Wisconsinan Laurentide Ice margin was likely north and west of the Pine Point area, as opposed to along the margin of the Canadian Shield and Western Sedimentary Basin where it has been suggested to have existed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During deglaciation of the North American Laurentide Ice Sheet large proglacial lakes developed in positions where proglacial drainage was impeded by the ice margin. For some of these lakes, it is known that subsequent drainage had an abrupt and widespread impact on North Atlantic Ocean circulation and climate, but less is known about the impact that the lakes exerted on ice sheet dynamics. This paper reports palaeogeographic reconstructions of the evolution of proglacial lakes during deglaciation across the northwestern Canadian Shield, covering an area in excess of 1,000,000 km(2) as the ice sheet retreated some 600 km. The interactions between proglacial lakes and ice sheet flow are explored, with a particular emphasis on whether the disposition of lakes may have influenced the location of the Dubawnt Lake ice stream. This ice stream falls outside the existing paradigm for ice streams in the Laurentide Ice Sheet because it did not operate over fined-grained till or lie in a topographic trough. Ice margin positions and a digital elevation model are utilised to predict the geometry and depth of proglacial takes impounded at the margin at 30-km increments during deglaciation. Palaeogeographic reconstructions match well with previous independent estimates of lake coverage inferred from field evidence, and results suggest that the development of a deep lake in the Thelon drainage basin may have been influential in initiating the ice stream by inducing calving, drawing down ice and triggering fast ice flow. This is the only location alongside this sector of the ice sheet where large (>3000 km(2)), deep lakes (similar to120 m) are impounded for a significant length of time and exactly matches the location of the ice stream. It is speculated that the commencement of calving at the ice sheet margin may have taken the system beyond a threshold and was sufficient to trigger rapid motion but that once initiated, calving processes and losses were insignificant to the functioning of the ice stream. It is thus concluded that proglacial lakes are likely to have been an important control on ice sheet dynamics during deglaciation of the Laurentide Ice Sheet. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From 1950 through 1900 studies on the glacial geology of northern Greenland have been made in cooperation with the U.S. Air Force Cambridge Research Laboratories. As a result of these studies four distinct phases of the latest glaciation have been recognized. The last glaciation extended over most of the land and removed traces of previous anes. Retreat of the ice mass began some time previous to 6000 years ago. This was followed by a rtse in sea level which deposited clay-silt succeeded by karne gravels around stagnant ice lobes in the large valleys. Marine terraces, up to 129 meters above present sea level, developed as readjustment occurred in the land free of ice. About 3700 years ago an advance of glaciers down major fjords took place followed by retreat to approximately the present position of the ice. Till in Peary Land, north of Frederick E. Hyde Fjord, contains only locally derived matertals indicating that the central Greenland ice cap did not cover the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many glacial deposits in the Quartermain Mountains, Antarctica present two apparent contradictions regarding the degradation of unconsolidated deposits. The glacial deposits are up to millions of years old, yet they have maintained their meter-scale morphology despite the fact that bedrock and regolith erosion rates in the Quartermain Mountains have been measured at 0.1-4.0 m/Ma. Additionally, ground ice persists in some Miocene-aged soils in the Quartermain Mountains even though modeled and measured sublimation rates of ice in Antarctic soils suggest that without any recharge mechanisms ground ice should sublimate in the upper few meters of soil on the order of 10**3 to 10**5 years. This paper presents results from using the concentration of cosmogenic nuclides beryllium-10 (10Be) and aluminum-26 (26Al) in bulk sediment samples from depth profiles of three glacial deposits in the Quartermain Mountains. The measured nuclide concentrations are lower than expected for the known ages of the deposits, erosion alone does not always explain these concentrations, and deflation of the tills by the sublimation of ice coupled with erosion of the overlying till can explain some of the nuclide concentration profiles. The degradation rates that best match the data range 0.7-12 m/Ma for sublimation of ice with initial debris concentrations ranging 12-45% and erosion of the overlying till at rates of 0.4-1.2 m/Ma. Overturning of the tills by cryoturbation, vertical mixing, or soil creep is not indicated by the cosmogenic nuclide profiles, and degradation appears to be limited to within a few centimeters of the surface. Erosion of these tills without vertical mixing may partially explain how some glacial deposits in the Quartermain Mountains maintain their morphology and contain ground ice close to the surface for millions of years.