905 resultados para glândula adrenal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the key neuron-to-neuron interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. However, the signal transduction mechanisms by which stress mediates its lasting effects on synapse transmission and on memory are not fully understood. A key component of the stress response is the increased secretion of adrenal steroids. Adrenal steroids (e.g., cortisol) bind to genomic mineralocorticoid and glucocorticoid receptors (gMRs and gGRs) in the cytosol. In addition, they may act through membrane receptors (mMRs and mGRs), and signal transduction through these receptors may allow for rapid modulation of synaptic transmission as well as modulation of membrane ion currents. mMRs increase synaptic and neuronal excitability; mechanisms include the facilitation of glutamate release through extracellular signal-regulated kinase signal transduction. In contrast, mGRs decrease synaptic and neuronal excitability by reducing calcium currents through N-methyl-D-aspartate receptors and voltage-gated calcium channels by way of protein kinase A- and G protein-dependent mechanisms. This body of functional data complements anatomical evidence localizing GRs to the postsynaptic membrane. Finally, accumulating data also suggest the possibility that mMRs and mGRs may show an inverted U-shaped dose response, whereby glutamatergic synaptic transmission is increased by low doses of corticosterone acting at mMRs and decreased by higher doses acting at mGRs. Thus, synaptic transmission is regulated by mMRs and mGRs, and part of the stress signaling response is a direct and bidirectional modulation of the synapse itself by adrenal steroids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: This study investigated the significance of baseline cortisol levels and adrenal response to corticotropin in shocked patients after acute myocardial infarction (AMI). METHODS: A short corticotropin stimulation test was performed in 35 patients with cardiogenic shock after AMI by intravenously injecting of 250 μg of tetracosactrin (Synacthen). Blood samples were obtained at baseline (T0) before and at 30 (T30) and 60 (T60) minutes after the test to determine plasma total cortisol (TC) and free cortisol concentrations. The main outcome measure was in-hospital mortality and its association with T0 TC and maximum response to corticotropin (maximum difference [Δ max] in cortisol levels between T0 and the highest value between T30 and T60). RESULTS: The in-hospital mortality was 37%, and the median time to death was 4 days (interquartile range, 3-9 days). There was some evidence of an increased mortality in patients with T0 TC concentrations greater than 34 μg/dL (P=.07). Maximum difference by itself was not an independent predictor of death. Patients with a T0 TC 34 μg/dL or less and Δ max greater than 9 μg/dL appeared to have the most favorable survival (91%) when compared with the other 2 groups: T0 34 μg/dL or less and Δ max 9 μg/dL or less or T0 34 μg/dL or higher and Δ max greater than 9 μg/dL (75%; P=.8) and T0 greater than 34 μg/dL and Δ max 9 μg/dL or less (60%; P=.02). Corticosteroid therapy was associated with an increased mortality (P=.03). There was a strong correlation between plasma TC and free cortisol (r=0.85). CONCLUSIONS: A high baseline plasma TC was associated with a trend toward increased mortality in patients with cardiogenic shock post-AMI. Patients with lower baseline TC, but with an inducible adrenal response, appeared to have a survival benefit. A prognostic system based on basal TC and Δ max similar to that described in septic shock appears feasible in this cohort. Corticosteroid therapy was associated with adverse outcomes. These findings require further validation in larger studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen signalling is critical for ovarian differentiation in reptiles with temperature-dependent sex determination (TSD). To elucidate the involvement of estrogen in this process, adrenal-kidney-gonadal (AKG) expression of estrogen receptor (ER alpha) was studied at female-producing temperature (FPT) in the developing embryos of the lizard, Calotes versicolor which exhibits a distinct pattern of TSD. The eggs of this lizard were incubated at 31.5 +/- 0.5 degrees C (100% FPT). The torso of embryos containing adrenal-kidney-gonadal complex (AKG) was collected during different stages of development and subjected to Western blotting and immunohistochemistry analysis. The ER alpha, antibody recognized two protein bands with apparent molecular weight similar to 55 and similar to 45 kDa in the total protein extracts of embryonic AKG complex of C. versicolor. The observed results suggest the occurrence of isoforms of ER alpha. The differential expression of two different protein isoforms may reveal their distinct role in cell proliferation during gonadal differentiation. This is the first report to reveal two isoforms of the ER alpha in a reptile during development. Immunohistochemical studies reveal a weak, but specific, cytoplasmic ER alpha immunostaining exclusively in the AKG during late thermo-sensitive period suggesting the responsiveness of AKG to estrogens before gonadal differentiation at FPT. Further, cytoplasmic as well as nuclear expression of ER alpha in the medulla and in oogonia of the cortex (faint activity) at gonadal differentiation stage suggests that the onset of gonadal estrogen activity coincides with sexual differentiation of gonad. Intensity and pattern of the immunoreactions of ER alpha in the medullary region at FPT suggest endogenous production of estrogen which may act in a paracrine fashion to induce neighboring cells into ovarian differentiation pathway. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este proyecto es desarrollar y probar nuevas técnicas de tinción para observar lo mejor posible en el microscopio las células basofilas de la glándula digestiva de los mejillones. Con este experimento queremos comprobar cuál puede ser la técnica de tinción mas apropiada para diferenciar y detectar dichas células.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterações nutricionais, hormonais e ambientais nos períodos críticos do desenvolvimento como a gestação e/ou lactação podem influenciar a estrutura e a fisiologia de órgãos e tecidos, predispondo ao aparecimento de doenças na vida adulta. Esse fenômeno é conhecido como programação metabólica. O fumo materno na gestação/lactação tem sido associado ao sobrepeso/obesidade na infância e na vida adulta em ambos os sexos. Porém, estudos evidenciam diferenças entre os gêneros em resposta a exposição à nicotina. Já foi demonstrado que muitas mulheres param de fumar na gestação, mas a maioria destas volta a fumar na lactação. Anteriormente, mostramos que machos adultos cujas mães foram expostas à nicotina na lactação, desenvolveram obesidade central, hiperleptinemia e hipotireoidismo. Como a nicotina afeta a função adrenal e como catecolaminas e glicocorticóides têm efeitos bem conhecidos sobre o tecido adiposo, avaliamos a função da medula adrenal e o conteúdo de leptina no tecido adiposo e músculo de machos e fêmeas cujas mães foram expostas à nicotina na lactação. Dois dias pós-parto, implantamos minibombas osmóticas nas ratas lactantes dividas em: NIC infusão de nicotina (6mg/Kg/dia s.c.) por 14 dias, e C infusão de salina pelo mesmo período. Estas lactantes foram divididas de acordo com o sexo das proles. O sacrifício das proles de ambos os sexos ocorreu aos 15 (fim da exposição à nicotina) e 180 dias de vida. Aos 15 dias, os machos da prole NIC apresentaram aumento de MGV absoluta e relativa ao peso corporal (+72% e +73% respectivamente), hiperleptinemia (+35%), hipercorticosteronemia (+67%), maior peso adrenal (+39%), conteúdo de catecolaminas totais (absoluto: +69% e relativo: +41%), embora diminuição da enzima TH (-33%). Quando adultos, os machos programados exibiram maior massa corporal (+10%), MGV absoluta (+47%) e relativa (+33%), além de hiperleptinemia (+41%) e maior conteúdo de leptina no TAV (+23%). Esses animais também apresentaram hipercorticosteronemia (+77%), maior conteúdo de catecolaminas totais absoluto e relativo (+79% e +89% respectivamente) e de TH (+38%) embora tenham menor secreção de catecolaminas in vitro estimulada por cafeína (-19%) e maior expressão do ADRB3 no TAV (+59%). Em relação as fêmeas da prole NIC aos 15 dias de vida, estas apresentaram menor massa corporal (-6%) e hiperleptinemia (+41%) embora sem alteração da MGV. Aos 180 dias, as fêmeas da prole NIC apresentaram menor conteúdo de leptina no TAS (-46%) e maior conteúdo de leptina no músculo solear (+22%) e diminuição da expressão do ADRB3 no TAV (-39%). Concluímos que a nicotina materna afeta ambos, medula adrenal e tecido adiposo de forma gênero dependente, tanto em curto prazo (quando a nicotina está presente no leite materno), quanto em longo prazo (repercussões na vida adulta). De forma geral, as fêmeas da prole NIC apresentam alterações mais discretas do que os machos em ambos os períodos estudados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycystic Ovary Syndrome (PCOS) is a complex disorder encompassing reproductive and metabolic dysfunction. Ovarian hyperandrogenism is an endocrine hallmark of human PCOS. In animal models, PCOS-like abnormalities can be recreated by in utero over-exposure to androgenic steroid hormones. This thesis investigated pancreatic and adrenal development and function in a unique model of PCOS. Fetal sheep were directly exposed (day 62 and day 82 of gestation) to steroidal excesses - androgen excess (testosterone propionate - TP), estrogen excess (diethylstilbestrol - DES) or glucocorticoid excess (dexamethasone - DEX). At d90 gestation there was elevated expression of genes involved in β- cell development and function: PDX-1 (P<0.001), and INS (P<0.05), INSR (P<0.05) driven by androgenic excess only in the female fetal pancreas. β- cell numbers (P<0.001) and in vitro insulin secretion (P<0.05) were also elevated in androgen exposed female fetuses. There was a significant increase in insulin secreting β-cell numbers (P<0.001) and in vivo insulin secretion (glucose stimulated) (P<0.01) in adult female offspring, specifically associated with prenatal androgen excess. At d90 gestation, female fetal adrenal gene expression was perturbed by fetal estrogenic exposure. Male fetal adrenal gene expression was altered more dramatically by fetal glucocorticoid exposure. In female adult offspring from androgen exposed pregnancies there was increased adrenal steroidogenic gene expression and in vivo testosterone secretion (P<0.01). This highlights that the adrenal glands may contribute towards excess androgen secretion in PCOS, but such effects might be secondary to other metabolic alterations driven by prenatal androgen exposure, such as excess insulin secretion Thus there may be dialogue between the pancreas and adrenal gland, programmed during early life, with implications for adult health Given both hyperinsulinaemia and hyperandrogenism are common features in PCOS, we suggest that their origins may be at least partially due to altered fetal steroidal environments, specifically excess androgenic stimulation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To determine whether routine outpatient monitoring of growth predicts adrenal suppression in prepubertal children treated with high dose inhaled glucocorticoid.

Methods: Observational study of 35 prepubertal children (aged 4–10 years) treated with at least 1000 µg/day of inhaled budesonide or equivalent potency glucocorticoid for at least six months. Main outcome measures were: changes in HtSDS over 6 and 12 month periods preceding adrenal function testing, and increment and peak cortisol after stimulation by low dose tetracosactrin test. Adrenal suppression was defined as a peak cortisol 500 nmol/l.

Results: The areas under the receiver operator characteristic curves for a decrease in HtSDS as a predictor of adrenal insufficiency 6 and 12 months prior to adrenal testing were 0.50 (SE 0.10) and 0.59 (SE 0.10). Prediction values of an HtSDS change of –0.5 for adrenal insufficiency at 12 months prior to testing were: sensitivity 13%, specificity 95%, and positive likelihood ratio of 2.4. Peak cortisol reached correlated poorly with change in HtSDS ( = 0.23, p = 0.19 at 6 months; = 0.33, p = 0.06 at 12 months).

Conclusions: Monitoring growth does not enable prediction of which children treated with high dose inhaled glucocorticoids are at risk of potentially serious adrenal suppression. Both growth and adrenal function should be monitored in patients on high dose inhaled glucocorticoids. Further research is required to determine the optimal frequency of monitoring adrenal function.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of cortisol levels as a measure of stress is often complicated by the use of invasive techniques that may increase hypothalamic-pituitary-adrenal (HPA) axis activity during sample collection. The goal of this study was to collect samples noninvasively and validate an enzyme-immunoassay (EIA) for the measurement of cortisol in urine to quantify HPA axis activity in the bearded emperor tamarin (Saguinus imperator subgrisescens). Urine samples were collected from trained subjects between 0700 and 0730 hr during a 1-month period, and were pooled for immunological validation. We validated the assay immunologically by demonstrating specificity, accuracy, precision, and sensitivity. For biological validation of the assay, we showed that levels of urinary cortisol (in samples collected between 0700 and 1700 hr) varied significantly across the day. Cortisol concentration was lowest at 0700 hr, increased to a mid-morning peak (0900 hr), and declined across the remainder of the day in a typical mammalian circadian pattern. We thus demonstrate that urinary cortisol can be used to quantify HPA activity in S. i. subgrisescens. (C) 2004 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital Adrenal Hyperplasia (CAH) is a family of autosomal recessive disorders involving impaired synthesis of cortisol from cholesterol by adrenal cortex. The predominant causes of the disorder are mutations in the CYP21A2 gene that encodes a Cytochrome P450 21-hydroxylase enzyme, which is central to steroidogenesis. The severity of the disease depends upon the extent of impaired enzymatic activity and can be classified under severe Classical form or the mild Non-Classical form, Molecular characterisation of CYP21A2 mutations can be used to predict clinical phenotype and disease severity based upon changes it brings in 21-hydroxylase enzyme structure. A humanized model of CYP21A2 has been used to map and investigate the structural role of all known disease-causing mutations. A structural explanation of clinical manifestation allows us to put forward criteria that might allow the prediction of clinical severity of the disease.