936 resultados para germs of holomorphic generalized functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a modification of the familiar cut function by replacing the linear part in its definition by a polynomial of degree p + 1 obtaining thus a sigmoid function called generalized cut function of degree p + 1 (GCFP). We then study the uniform approximation of the (GCFP) by smooth sigmoid functions such as the logistic and the shifted logistic functions. The limiting case of the interval-valued Heaviside step function is also discussed which imposes the use of Hausdorff metric. Numerical examples are presented using CAS MATHEMATICA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 47B33, 47B38.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guba and Sapir asked, in their joint paper [8], if the simultaneous conjugacy problem was solvable in Diagram Groups or, at least, for Thompson's group F. We give an elementary proof for the solution of the latter question. This relies purely on the description of F as the group of piecewise linear orientation-preserving homeomorphisms of the unit. The techniques we develop allow us also to solve the ordinary conjugacy problem as well, and we can compute roots and centralizers. Moreover, these techniques can be generalized to solve the same questions in larger groups of piecewise-linear homeomorphisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows that certain quotients of entire functions are characteristic functions. Under some conditions, we provide expressions for the densities of such characteristic functions which turn out to be generalized Dirichlet series which in turn can be expressed as an infinite linear combination of exponential or Laplace densities. We apply these results to several examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the existence of a holomorphic generalized solution u of the PDE[GRAPHICS]where f is a given holomorphic generalized function and (alpha (1),...alpha (m)) is an element of C-m\{0}.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the work is to study the existence and nonexistence of shock wave solutions for the Burger equations. The study is developed in the context of Colombeau's theory of generalized functions (GFs). This study uses the equality in the strict sense and the weak equality of GFs. The shock wave solutions are given in terms of GFs that have the Heaviside function, in x and ( x, t) variables, as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function, in R-n and R-n x R, in the distributional limit sense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we explore the link between the moments of the Laguerre polynomials or Laguerre moments and the generalized functions (as the Dirac delta-function and its derivatives), presenting several interesting relations. A useful application is related to a procedure for calculating mean values in quantum optics that makes use of the so-called quasi-probabilities. One of them, the P-distribution, can be represented by a sum over Laguerre moments when the electromagnetic field is in a photon-number state. Consequently, the P-distribution can be expressed in terms of Dirac delta-function and derivatives. More specifically, we found a direct relation between P-distributions and the Laguerre factorial moments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction of two classes of exact solutions for the most general time-dependent Dirac Hamiltonian in 1+1 dimensions was discussed. The extension of solutions by introduction of a time-dependent mass was elaborated. The possibility of existence of a generalized Lewis-Riesenfeld invariant connected with such solutions was also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work comprises a study upon the quantization and the renormalizability of the generalized electrodynamics of spinless charged particles (mesons), namely, the generalized scalar electrodynamics (GSQED4). The theory is quantized in the covariant framework of the Batalin-Fradkin-Vilkovisky method. Thereafter, the complete Green's functions are obtained through functional methods and a proper discussion on the theory's renormalizability is also given. Next, we present the computation and further discussion on the radiative correction at α order; and, as it turns out, an unexpected mP-dependent divergence on the mesonic sector of the theory is found. Furthermore, in order to show the effectiveness of the renormalization procedure on the present theory, we also give a diagrammatic discussion on the photon self-energy at α2 order, where we observe contributions from the meson self-energy function. Afterwards, we present the expressions of the counterterms and effective coupling of the theory, obtaining from the latter an energy range where the theory is defined by m2≤k2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we show that the equation delta u/delta (z) over bar + Gu = f, where the elements involved are in generalized functions context, has a local solution in the generalized functions context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show the existence of free dense subgroups, generated by two elements, in the holomorphic shear and overshear group of complex-Euclidean space and extend this result to the group of holomorphic automorphisms of Stein manifolds with the density property, provided there exists a generalized translation. The conjugation operator associated to this generalized translation is hypercyclic on the topological space of holomorphic automorphisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. New functions for chattering reduction and error convergence without sacrificing invariant properties are proposed. The main feature of the proposed method is that the switching function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules; together with the state variables. In this work, a tuning of the well known weighting parameters approach is proposed to optimize local and global approximation and modelling capability of the Takagi-Sugeno (T-S) fuzzy model to improve the choice of the performance index and minimize it. The main problem encountered is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership function has been widely used in control applications. The approach developed here can be considered as a generalized version of the T-S method. An inverted pendulum mounted on a cart is chosen to evaluate the robustness, effectiveness, accuracy and remarkable performance of the proposed estimation approach in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the chattering reduction algorithm. In this paper, we prove that the proposed estimation algorithm converge the very fast, thereby making it very practical to use. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is proved that if the increasing sequence {kn} n=0..∞ n=0 of nonnegative integers has density greater than 1/2 and D is an arbitrary simply connected subregion of C\R then the system of Hermite associated functions Gkn(z) n=0..∞ is complete in the space H(D) of complex functions holomorphic in D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first motivation for this note is to obtain a general version of the following result: let E be a Banach space and f : E → R be a differentiable function, bounded below and satisfying the Palais-Smale condition; then, f is coercive, i.e., f(x) goes to infinity as ||x|| goes to infinity. In recent years, many variants and extensions of this result appeared, see [3], [5], [6], [9], [14], [18], [19] and the references therein. A general result of this type was given in [3, Theorem 5.1] for a lower semicontinuous function defined on a Banach space, through an approach based on an abstract notion of subdifferential operator, and taking into account the “smoothness” of the Banach space. Here, we give (Theorem 1) an extension in a metric setting, based on the notion of slope from [11] and coercivity is considered in a generalized sense, inspired by [9]; our result allows to recover, for example, the coercivity result of [19], where a weakened version of the Palais-Smale condition is used. Our main tool (Proposition 1) is a consequence of Ekeland’s variational principle extending [12, Corollary 3.4], and deals with a function f which is, in some sense, the “uniform” Γ-limit of a sequence of functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 33C20.