999 resultados para geostatistical method
Resumo:
A geostatistical version of the classical Fisher rule (linear discriminant analysis) is presented.This method is applicable when a large dataset of multivariate observations is available within a domain split in several known subdomains, and it assumes that the variograms (or covariance functions) are comparable between subdomains, which only differ in the mean values of the available variables. The method consists on finding the eigen-decomposition of the matrix W-1B, where W is the matrix of sills of all direct- and cross-variograms, and B is the covariance matrix of the vectors of weighted means within each subdomain, obtained by generalized least squares. The method is used to map peat blanket occurrence in Northern Ireland, with data from the Tellus
survey, which requires a minimal change to the general recipe: to use compositionally-compliant variogram tools and models, and work with log-ratio transformed data.
Resumo:
In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Mat`ern models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.
Resumo:
Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation period. It is found that both methods yield merged fields of better quality than the original radar field or fields obtained by OK of gauge data. The newly suggested KED formulation is shown to be beneficial, in particular in mountainous regions where the quality of the Swiss radar composite is comparatively low. An analysis of the Kriging variances shows that none of the methods tested here provides a satisfactory uncertainty estimate. A suitable variable transformation is expected to improve this.
Resumo:
As condições de ambiente térmico e aéreo, no interior de instalações para animais, alteram-se durante o dia, devido à influência do ambiente externo. Para que análises estatísticas e geoestatísticas sejam representativas, uma grande quantidade de pontos distribuídos espacialmente na área da instalação deve ser monitorada. Este trabalho propõe que a variação no tempo das variáveis ambientais de interesse para a produção animal, monitoradas no interior de instalações para animais, pode ser modelada com precisão a partir de registros discretos no tempo. O objetivo deste trabalho foi desenvolver um método numérico para corrigir as variações temporais dessas variáveis ambientais, transformando os dados para que tais observações independam do tempo gasto durante a aferição. O método proposto aproximou os valores registrados com retardos de tempo aos esperados no exato momento de interesse, caso os dados fossem medidos simultaneamente neste momento em todos os pontos distribuídos espacialmente. O modelo de correção numérica para variáveis ambientais foi validado para o parâmetro ambiental temperatura do ar, sendo que os valores corrigidos pelo método não diferiram pelo teste Tukey, a 5% de probabilidade dos valores reais registrados por meio de dataloggers.
Resumo:
The mining process promotes land modification and complete landscape alteration. Those alterations in the surface are shown more obviously in the aesthetical aspect as the visual elements of form, texture, climbs, complexity and color which composes the landscape. As a consequence, mining has impacts on the topography, in the soil, in the vegetation and in the area's drainage, with a direct influence on the enterprise. A quite common problem in the recovery of degraded areas in mineral exploration is the compaction of the soil due to the intense traffic of machines and earth movement. The most common problem of the compaction of a degraded surface is an increase of the mechanical resistance to the penetration of plant roots, a reduction of the aeration, an alteration of the flow of water and heat, also in the availability of water and nutrients. Thus, the present work had the basic objective of diagnosing the compaction of an area degraded by mining in a spacial way, through the mechanical resistance and the penetration, to guide the future subsoiling in the area requiring recovery. Through the studies, it was concluded that the krigagem method in agreement with the space variation allows the division of the area under study into sub areas facilitating a future work to reduce costs and unnecessary interference to the atmosphere. The method was shown to be quite appropriate and it can be used in the diagnosis of compaction in a degraded area by mining, foreseeing the subsoiling requirement.
Resumo:
As condições de ambiente térmico e aéreo, no interior de instalações para animais, alteram-se durante o dia, devido à influência do ambiente externo. Para que análises estatísticas e geoestatísticas sejam representativas, uma grande quantidade de pontos distribuídos espacialmente na área da instalação deve ser monitorada. Este trabalho propõe que a variação no tempo das variáveis ambientais de interesse para a produção animal, monitoradas no interior de instalações para animais, pode ser modelada com precisão a partir de registros discretos no tempo. O objetivo deste trabalho foi desenvolver um método numérico para corrigir as variações temporais dessas variáveis ambientais, transformando os dados para que tais observações independam do tempo gasto durante a aferição. O método proposto aproximou os valores registrados com retardos de tempo aos esperados no exato momento de interesse, caso os dados fossem medidos simultaneamente neste momento em todos os pontos distribuídos espacialmente. O modelo de correção numérica para variáveis ambientais foi validado para o parâmetro ambiental temperatura do ar, sendo que os valores corrigidos pelo método não diferiram pelo teste Tukey, a 5% de probabilidade dos valores reais registrados por meio de dataloggers.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.