990 resultados para geometric optimization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider evolving exponential RGGs in one dimension and characterize the time dependent behavior of some of their topological properties. We consider two evolution models and study one of them detail while providing a summary of the results for the other. In the first model, the inter-nodal gaps evolve according to an exponential AR(1) process that makes the stationary distribution of the node locations exponential. For this model we obtain the one-step conditional connectivity probabilities and extend it to the k-step case. Finite and asymptotic analysis are given. We then obtain the k-step connectivity probability conditioned on the network being disconnected. We also derive the pmf of the first passage time for a connected network to become disconnected. We then describe a random birth-death model where at each instant, the node locations evolve according to an AR(1) process. In addition, a random node is allowed to die while giving birth to a node at another location. We derive properties similar to those above.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a new algorithm for learning oblique decision trees. Most of the current decision tree algorithms rely on impurity measures to assess the goodness of hyperplanes at each node while learning a decision tree in top-down fashion. These impurity measures do not properly capture the geometric structures in the data. Motivated by this, our algorithm uses a strategy for assessing the hyperplanes in such a way that the geometric structure in the data is taken into account. At each node of the decision tree, we find the clustering hyperplanes for both the classes and use their angle bisectors as the split rule at that node. We show through empirical studies that this idea leads to small decision trees and better performance. We also present some analysis to show that the angle bisectors of clustering hyperplanes that we use as the split rules at each node are solutions of an interesting optimization problem and hence argue that this is a principled method of learning a decision tree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a methodology for designing a compliant aircraft wing, which can morph from a given airfoil shape to another given shape under the actuation of internal forces and can offer sufficient stiffness in both configurations under the respective aerodynamic loads. The least square error in displacements, Fourier descriptors, geometric moments, and moment invariants are studied to compare candidate shapes and to pose the optimization problem. Their relative merits and demerits are discussed in this paper. The `frame finite element ground structure' approach is used for topology optimization and the resulting solutions are converted to continuum solutions. The introduction of a notch-like feature is the key to the success of the design. It not only gives a good match for the target morphed shape for the leading and trailing edges but also minimizes the extension of the flexible skin that is to be put on the airfoil frame. Even though linear small-displacement elastic analysis is used in optimization, the obtained designs are analysed for large displacement behavior. The methodology developed here is not restricted to aircraft wings; it can be used to solve any shape-morphing requirement in flexible structures and compliant mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fracture toughness measurements at the small scale have gained prominence over the years due to the continuing miniaturization of structural systems. Measurements carried out on bulk materials cannot be extrapolated to smaller length scales either due to the complexity of the microstructure or due to the size and geometric effect. Many new geometries have been proposed for fracture property measurements at small-length scales depending on the material behaviour and the type of device used in service. In situ testing provides the necessary environment to observe fracture at these length scales so as to determine the actual failure mechanism in these systems. In this paper, several improvements are incorporated to a previously proposed geometry of bending a doubly clamped beam for fracture toughness measurements. Both monotonic and cyclic loading conditions have been imposed on the beam to study R-curve and fatigue effects. In addition to the advantages that in situ SEM-based testing offers in such tests, FEM has been used as a simulation tool to replace cumbersome and expensive experiments to optimize the geometry. A description of all the improvements made to this specific geometry of clamped beam bending to make a variety of fracture property measurements is given in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demixing is the task of identifying multiple signals given only their sum and prior information about their structures. Examples of demixing problems include (i) separating a signal that is sparse with respect to one basis from a signal that is sparse with respect to a second basis; (ii) decomposing an observed matrix into low-rank and sparse components; and (iii) identifying a binary codeword with impulsive corruptions. This thesis describes and analyzes a convex optimization framework for solving an array of demixing problems.

Our framework includes a random orientation model for the constituent signals that ensures the structures are incoherent. This work introduces a summary parameter, the statistical dimension, that reflects the intrinsic complexity of a signal. The main result indicates that the difficulty of demixing under this random model depends only on the total complexity of the constituent signals involved: demixing succeeds with high probability when the sum of the complexities is less than the ambient dimension; otherwise, it fails with high probability.

The fact that a phase transition between success and failure occurs in demixing is a consequence of a new inequality in conic integral geometry. Roughly speaking, this inequality asserts that a convex cone behaves like a subspace whose dimension is equal to the statistical dimension of the cone. When combined with a geometric optimality condition for demixing, this inequality provides precise quantitative information about the phase transition, including the location and width of the transition region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop new algorithms which combine the rigorous theory of mathematical elasticity with the geometric underpinnings and computational attractiveness of modern tools in geometry processing. We develop a simple elastic energy based on the Biot strain measure, which improves on state-of-the-art methods in geometry processing. We use this energy within a constrained optimization problem to, for the first time, provide surface parameterization tools which guarantee injectivity and bounded distortion, are user-directable, and which scale to large meshes. With the help of some new generalizations in the computation of matrix functions and their derivative, we extend our methods to a large class of hyperelastic stored energy functions quadratic in piecewise analytic strain measures, including the Hencky (logarithmic) strain, opening up a wide range of possibilities for robust and efficient nonlinear elastic simulation and geometry processing by elastic analogy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis introduces new tools for geometric discretization in computer graphics and computational physics. Our work builds upon the duality between weighted triangulations and power diagrams to provide concise, yet expressive discretization of manifolds and differential operators. Our exposition begins with a review of the construction of power diagrams, followed by novel optimization procedures to fully control the local volume and spatial distribution of power cells. Based on this power diagram framework, we develop a new family of discrete differential operators, an effective stippling algorithm, as well as a new fluid solver for Lagrangian particles. We then turn our attention to applications in geometry processing. We show that orthogonal primal-dual meshes augment the notion of local metric in non-flat discrete surfaces. In particular, we introduce a reduced set of coordinates for the construction of orthogonal primal-dual structures of arbitrary topology, and provide alternative metric characterizations through convex optimizations. We finally leverage these novel theoretical contributions to generate well-centered primal-dual meshes, sphere packing on surfaces, and self-supporting triangulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of global optimization of M phase-incoherent signals in N complex dimensions is formulated. Then, by using the geometric approach of Landau and Slepian, conditions for optimality are established for N = 2 and the optimal signal sets are determined for M = 2, 3, 4, 6, and 12.

The method is the following: The signals are assumed to be equally probable and to have equal energy, and thus are represented by points ṡi, i = 1, 2, …, M, on the unit sphere S1 in CN. If Wik is the halfspace determined by ṡi and ṡk and containing ṡi, i.e. Wik = {ṙϵCN:| ≥ | ˂ṙ, ṡk˃|}, then the Ʀi = ∩/k≠i Wik, i = 1, 2, …, M, the maximum likelihood decision regions, partition S1. For additive complex Gaussian noise ṅ and a received signal ṙ = ṡie + ṅ, where ϴ is uniformly distributed over [0, 2π], the probability of correct decoding is PC = 1/πN ∞/ʃ/0 r2N-1e-(r2+1)U(r)dr, where U(r) = 1/M M/Ʃ/i=1 Ʀi ʃ/∩ S1 I0(2r | ˂ṡ, ṡi˃|)dσ(ṡ), and r = ǁṙǁ.

For N = 2, it is proved that U(r) ≤ ʃ/Cα I0(2r|˂ṡ, ṡi˃|)dσ(ṡ) – 2K/M. h(1/2K [Mσ(Cα)-σ(S1)]), where Cα = {ṡϵS1:|˂ṡ, ṡi˃| ≥ α}, K is the total number of boundaries of the net on S1 determined by the decision regions, and h is the strictly increasing strictly convex function of σ(Cα∩W), (where W is a halfspace not containing ṡi), given by h = ʃ/Cα∩W I0 (2r|˂ṡ, ṡi˃|)dσ(ṡ). Conditions for equality are established and these give rise to the globally optimal signal sets for M = 2, 3, 4, 6, and 12.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the manual labor needed to create the geometric building information model (BIM) of an existing facility is spent converting raw point cloud data (PCD) to a BIM description. Automating this process would drastically reduce the modeling cost. Surface extraction from PCD is a fundamental step in this process. Compact modeling of redundant points in PCD as a set of planes leads to smaller file size and fast interactive visualization on cheap hardware. Traditional approaches for smooth surface reconstruction do not explicitly model the sparse scene structure or significantly exploit the redundancy. This paper proposes a method based on sparsity-inducing optimization to address the planar surface extraction problem. Through sparse optimization, points in PCD are segmented according to their embedded linear subspaces. Within each segmented part, plane models can be estimated. Experimental results on a typical noisy PCD demonstrate the effectiveness of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lattice materials are characterized at the microscopic level by a regular pattern of voids confined by walls. Recent rapid prototyping techniques allow their manufacturing from a wide range of solid materials, ensuring high degrees of accuracy and limited costs. The microstructure of lattice material permits to obtain macroscopic properties and structural performance, such as very high stiffness to weight ratios, highly anisotropy, high specific energy dissipation capability and an extended elastic range, which cannot be attained by uniform materials. Among several applications, lattice materials are of special interest for the design of morphing structures, energy absorbing components and hard tissue scaffold for biomedical prostheses. Their macroscopic mechanical properties can be finely tuned by properly selecting the lattice topology and the material of the walls. Nevertheless, since the number of the design parameters involved is very high, and their correlation to the final macroscopic properties of the material is quite complex, reliable and robust multiscale mechanics analysis and design optimization tools are a necessary aid for their practical application. In this paper, the optimization of lattice materials parameters is illustrated with reference to the design of a bracket subjected to a point load. Given the geometric shape and the boundary conditions of the component, the parameters of four selected topologies have been optimized to concurrently maximize the component stiffness and minimize its mass. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aerodynamic design of turbomachinery presents the design optimisation community with a number of exquisite challenges. Chief among these are the size of the design space and the extent of discontinuity therein. This discontinuity can serve to limit the full exploitation of high-fidelity computational fluid dynamics (CFD): such codes require detailed geometric information often available only sometime after the basic configuration of the machine has been set by other means. The premise of this paper is that it should be possible to produce higher performing designs in less time by exploiting multi-fidelity techniques to effectively harness CFD earlier in the design process, specifically by facilitating its participation in configuration selection. The adopted strategy of local multi-fidelity correction, generated on demand, combined with a global search algorithm via an adaptive trust region is first tested on a modest, smooth external aerodynamic problem. Speed-up of an order of magnitude is demonstrated, comparable to established techniques applied to smooth problems. A number of enhancements aimed principally at effectively evaluating a wide range of configurations quickly is then applied to the basic strategy, and the emerging technique is tested on a generic aeroengine core compression system. A similar order of magnitude speed-up is achieved on this relatively large and highly discontinuous problem. A five-fold increase in the number of configurations assessed with CFD is observed. As the technique places constraints neither on the underlying physical modelling of the constituent analysis codes nor on first-order agreement between those codes, it has potential applicability to a range of multidisciplinary design challenges. © 2012 by Jerome Jarrett and Tiziano Ghisu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two main perspectives have been developed within the Multidisciplinary Design Optimization (MDO) literature for classifying and comparing MDO architectures: a numerical point of view and a formulation/data flow point of view. Although significant work has been done here, these perspectives have not provided much in the way of a priori information or predictive power about architecture performance. In this report, we outline a new perspective, called the geometric perspective, which we believe will be able to provide such predictive power. Using tools from differential geometry, we take several prominent architectures and describe mathematically how each constructs the space through which it moves. We then consider how the architecture moves through the space which it has constructed. Taken together, these investigations show how each architecture relates to the original feasible design manifold, how the architectures relate to each other, and how each architecture deals with the design coupling inherent to the original system. This in turn lays the groundwork for further theoretical comparisons between and analyses of MDO architectures and their behaviour using tools and techniques derived from differential geometry. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric framework of optimization on Riemannian quotient manifolds. We study the underlying geometries of several well-known fixed-rank matrix factorizations and then exploit the Riemannian quotient geometry of the search space in the design of a class of gradient descent and trust-region algorithms. The proposed algorithms generalize our previous results on fixed-rank symmetric positive semidefinite matrices, apply to a broad range of applications, scale to high-dimensional problems, and confer a geometric basis to recent contributions on the learning of fixed-rank non-symmetric matrices. We make connections with existing algorithms in the context of low-rank matrix completion and discuss the usefulness of the proposed framework. Numerical experiments suggest that the proposed algorithms compete with state-of-the-art algorithms and that manifold optimization offers an effective and versatile framework for the design of machine learning algorithms that learn a fixed-rank matrix. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tridimensional model of α-Fe2O3 and models of (0001) and (1102) surfaces on it were built. Then the structural optimization of the (0001) surface was presented which explored the influence of the system scale and the terminal surface configuration. Four different models including two different system scale structures (MODEL□ and MODEL□) and two different terminal structures (MODEL□ and MODEL□) were analyzed in this paper. It was concluded that the boundary effect was more important in a smaller system in the structure optimization. And the Fe-terminated was more stable than the O-terminated structure which was agreed with the experiences, this structural model can be used in further work including the monatomic adsorption/desorption and the chemical reactions on this surface.