27 resultados para geoinformatics
Resumo:
[EN] This paper describes a wildfire forecasting application based on a 3D virtual environment and a fire simulation engine. A new open source framework is presented for the development of 3D graphics applications over large geographic areas offering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems community. The application includes a remote module that allows simultaneous connection of several users for monitoring a real wildfire event. The user is enabled to simulate and visualize a wildfire spreading on the terrain under conditions of spatial information on topography and fuels along with weather and wind files.
Resumo:
This dataset provides scaling information applicable to satellite derived coarse resolution surface soil moisture datasets following the approach by Wagner et al. (2008). It is based on ENVISAT ASAR data and can be utilized to apply the Metop ASCAT dataset (25 km) for local studies as well as to assess the representativeness of in-situ measurement sites and thus their potential for upscaling. The approach based on temporal stability (Wagner et al. 2008) consists of the assessment of the validity of the coarse resolution datasets at medium resolution (1 km, product is the so called 'scaling layer').
Resumo:
Geographic knowledge discovery (GKD) is the process of extracting information and knowledge from massive georeferenced databases. Usually the process is accomplished by two different systems, the Geographic Information Systems (GIS) and the data mining engines. However, the development of those systems is a complex task due to it does not follow a systematic, integrated and standard methodology. To overcome these pitfalls, in this paper, we propose a modeling framework that addresses the development of the different parts of a multilayer GKD process. The main advantages of our framework are that: (i) it reduces the design effort, (ii) it improves quality systems obtained, (iii) it is independent of platforms, (iv) it facilitates the use of data mining techniques on geo-referenced data, and finally, (v) it ameliorates the communication between different users.
Resumo:
The Semantic Web has come a long way since its inception in 2001, especially in terms of technical development and research progress. However, adoption by non- technical practitioners is still an ongoing process, and in some areas this process is just now starting. Emergency response is an area where reliability and timeliness of information and technologies is of essence. Therefore it is quite natural that more widespread adoption in this area has not been seen until now, when Semantic Web technologies are mature enough to support the high requirements of the application area. Nevertheless, to leverage the full potential of Semantic Web research results for this application area, there is need for an arena where practitioners and researchers can meet and exchange ideas and results. Our intention is for this workshop, and hopefully coming workshops in the same series, to be such an arena for discussion. The Extended Semantic Web Conference (ESWC - formerly the European Semantic Web conference) is one of the major research conferences in the Semantic Web field, whereas this is a suitable location for this workshop in order to discuss the application of Semantic Web technology to our specific area of applications. Hence, we chose to arrange our first SMILE workshop at ESWC 2013. However, this workshop does not focus solely on semantic technologies for emergency response, but rather Semantic Web technologies in combination with technologies and principles for what is sometimes called the "social web". Social media has already been used successfully in many cases, as a tool for supporting emergency response. The aim of this workshop is therefore to take this to the next level and answer questions like: "how can we make sense of, and furthermore make use of, all the data that is produced by different kinds of social media platforms in an emergency situation?" For the first edition of this workshop the chairs collected the following main topics of interest: • Semantic Annotation for understanding the content and context of social media streams. • Integration of Social Media with Linked Data. • Interactive Interfaces and visual analytics methodologies for managing multiple large-scale, dynamic, evolving datasets. • Stream reasoning and event detection. • Social Data Mining. • Collaborative tools and services for Citizens, Organisations, Communities. • Privacy, ethics, trustworthiness and legal issues in the Social Semantic Web. • Use case analysis, with specific interest for use cases that involve the application of Social Media and Linked Data methodologies in real-life scenarios. All of these, applied in the context of: • Crisis and Disaster Management • Emergency Response • Security and Citizen Journalism The workshop received 6 high-quality paper submissions and based on a thorough review process, thanks to our program committee, the decision was made to accept four of these papers for the workshop (67% acceptance rate). These four papers can be found later in this proceedings volume. Three out of four of these papers particularly discuss the integration and analysis of social media data, using Semantic Web technologies, e.g. for detecting complex events in social media streams, for visualizing and analysing sentiments with respect to certain topics in social media, or for detecting small-scale incidents entirely through the use of social media information. Finally, the fourth paper presents an architecture for using Semantic Web technologies in resource management during a disaster. Additionally, the workshop featured an invited keynote speech by Dr. Tomi Kauppinen from Aalto university. Dr. Kauppinen shared experiences from his work on applying Semantic Web technologies to application fields such as geoinformatics and scientific research, i.e. so-called Linked Science, but also recent ideas and applications in the emergency response field. His input was also highly valuable for the roadmapping discussion, which was held at the end of the workshop. A separate summary of the roadmapping session can be found at the end of these proceedings. Finally, we would like to thank our invited speaker Dr. Tomi Kauppinen, all our program committee members, as well as the workshop chair of ESWC2013, Johanna Völker (University of Mannheim), for helping us to make this first SMILE workshop a highly interesting and successful event!
Resumo:
Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) using 36 parameters of REMO regional climate data-set, ArcGIS geographic information software, and periods of 1961-1990 (reference period), 2011-2040, and 2041-2070. The disadvantages of this relatively simple climate envelope modeling (CEM) approach are then discussed and several ways of model improvement are suggested. Some statistical and artificial intelligence (AI) methods (logistic regression, cluster analysis and other clustering methods, decision tree, evolutionary algorithm, artificial neural network) are able to provide development of the model. Among them artificial neural networks (ANN) seems to be the most suitable algorithm for this purpose, which provides a black box method for distribution modeling.
Resumo:
Requirements for space based monitoring of permafrost features had been already defined within the IGOS Cryosphere Theme Report at the start of the IPY in 2007 (IGOS, 2007). The WMO Polar Space Task Group (PSTG, http://www.wmo.int/pages/prog/sat/pstg_en.php) identified the need to review the requirements for permafrost monitoring and to update these requirements in 2013. Relevant surveys with focus on satellite data are already available from the ESA DUE Permafrost User requirements survey (2009), the United States National Research Council (2014) and the ESA - CliC - IPA - GTN -P workshop in February 2014. These reports have been reviewed and specific needs discussed within the community and a white paper submitted to the WMO PSTG. Acquisition requirements for monitoring of especially terrain changes (incl. rock glaciers and coastal erosion) and lakes (extent, ice properties etc.) with respect to current satellite missions have been specified. About 50 locations ('cold spots') where permafrost (Arctic and Antarctic) in situ monitoring has been taking place for many years or where field stations are currently established have been identified. These sites have been proposed to the WMO Polar Space Task Group as focus areas for future monitoring by high resolution satellite data. The specifications of these sites including meta-data on site instrumentation have been published as supplement to the white paper (Bartsch et al. 2014, doi:10.1594/PANGAEA.847003). The representativity of the 'cold spots' around the arctic has been in the following assessed based on a landscape units product which has been developed as part of the FP7 project PAGE21. The ESA DUE Permafrost service has been utilized to produce a pan-arctic database (25km, 2000-2014) comprising Mean Annual Surface Temperature, Annual and summer Amplitude of Surface Temperature, Mean Summer (July-August) Surface Temperature. Surface status (frozen/unfrozen) related products have been also derived from the ESA DUE Permafrost service. This includes the length of unfrozen period, first unfrozen day and first frozen day. In addition, SAR (ENVISAT ASAR GM) statistics as well as topographic parameters have been considered. The circumpolar datasets have been assessed for their redundancy in information content. 12 distinct units could be derived. The landscape units reveal similarities between North Slope Alaska and the region from the Yamal Peninsula to the Yenisei estuary. Northern Canada is characterized by the same landscape units like western Siberia. North-eastern Canada shows similarities to the Laptev coast region. This paper presents the result of this assessment and formulates recommendations for extensions of the in situ monitoring networks and categorizes the sites by satellite data requirements (specifically Sentinels) with respect to the landscape type and related processes.
Resumo:
The International Association for Mathematical Geosciences (IAMG) commemorated William Smith (23rd March 1769 - 28th August 1839) and 200 years of geomodelling with geological surveys and academics across the globe at the 17th annual conference of the IAMG in Freiberg, Germany from the 5th to 13th September 2015. The aim of the IAMG is to promote the use of mathematics, statistics and geoinformatics in the geosciences. The annual IAMG conference is an opportunity for geoscientists to collaborate with mathematicians and statisticians and present their recent work. The
17th annual IAMG conference, with 300 participants from across the world, differed from previous IAMG conferences in that it included a special ‘Day of Surveys’ to acknowledge 200 years of science and methodologies to construct maps.