955 resultados para genetics and DNA sequencing
Resumo:
Sets of RNA ladders can be synthesized by transcription of a bacteriophage-encoded RNA polymerase using 3′-deoxynucleotides as chain terminators. These ladders can be used for sequencing of DNA. Using a nicked form of phage SP6 RNA polymerase in this study substantially enhanced yields of transcriptional sequencing ladders. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of chain-terminated RNA ladders allowed DNA sequence determination of up to 56 nt. It is also demonstrated that A→G and C→T variations in heterozygous and homozygous samples can be unambiguously identified by the mass spectrometric analysis. As a step towards single-tube sequencing reactions, α-thiotriphosphate nucleotide analogs were used to overcome problems caused by chain terminator-independent, premature termination and by the small mass difference between natural pyrimidine nucleotides.
Resumo:
Fluorescent dye-labeled DNA primers have been developed that exploit fluorescence energy transfer (ET) to optimize the absorption and emission properties of the label. These primers carry a fluorescein derivative at the 5' end as a common donor and other fluorescein and rhodamine derivatives attached to a modified thymidine residue within the primer sequence as acceptors. Adjustment of the donor-acceptor spacing through the placement of the modified thymidine in the primer sequence allowed generation of four primers, all having strong absorption at a common excitation wavelength (488 nm) and fluorescence emission maxima of 525, 555, 580, and 605 nm. The ET efficiency of these primers ranges from 65% to 97%, and they exhibit similar electrophoretic mobilities by gel electrophoresis. With argon-ion laser excitation, the fluorescence of the ET primers and of the DNA sequencing fragments generated with ET primers is 2- to 6-fold greater than that of the corresponding primers or fragments labeled with single dyes. The higher fluorescence intensity of the ET primers allows DNA sequencing with one-fourth of the DNA template typically required when using T7 DNA polymerase. With single-stranded M13mp18 DNA as the template, a typical sequencing reaction with ET primers on a commercial sequencer provided DNA sequences with 99.8% accuracy in the first 500 bases. ET primers should be generally useful in the development of other multiplex DNA sequencing and analysis methods.
Resumo:
In just over a decade, the use of molecular approaches for the recognition of parasites has become commonplace. For trematodes, the internal transcribed spacer region of ribosomal DNA (ITS rDNA) has become the default region of choice. Here, we review the findings of 63 studies that report ITS rDNA sequence data for about 155 digenean species from 19 families, and then review the levels of variation that have been reported and how the variation has been interpreted. Overall, complete ITS sequences (or ITS1 or ITS2 regions alone) usually distinguish trematode species clearly, including combinations for which morphology gives ambiguous results. Closely related species may have few base differences and in at least one convincing case the ITS2 sequences of two good species are identical. In some cases, the ITS1 region gives greater resolution than the ITS2 because of the presence of variable repeat units that are generally lacking in the ITS2. Intraspecific variation is usually low and frequently apparently absent. Information on geographical variation of digeneans is limited but at least some of the reported variation probably reflects the presence of multiple species. Despite the accepted dogma that concerted evolution makes the individual representative of the entire species, a significant number of studies have reported at least some intraspecific variation. The significance of such variation is difficult to assess a posteriori, but it seems likely that identification and sequencing errors account for some of it and failure to recognise separate species may also be significant. Some reported variation clearly requires further analysis. The use of a yardstick to determine when separate species should be recognised is flawed. Instead, we argue that consistent genetic differences that are associated with consistent morphological or biological traits should be considered the marker for separate species. We propose a generalised approach to the use of rDNA to distinguish trematode species.
Resumo:
The investigations of human mitochondrial DNA (mtDNA) have considerably contributed to human evolution and migration. The Middle East is considered to be an essential geographic area for human migrations out of Africa since it is located at the crossroads of Africa, and the rest of the world. United Arab Emirates (UAE) population inhabits the eastern part of Arabian Peninsula and was investigated in this study. Published data of 18 populations were included in the statistical analysis. The diversity indices showed (1) high genetic distance among African populations and (2) high genetic distance between African populations and non-African populations. Asian populations clustered together in the NJ tree between the African and European populations. MtDNA haplotypes database of the UAE population was generated. By incorporating UAE mtDNA dataset into the existing worldwide mtDNA database, UAE Forensic Laboratories will be able to analyze future mtDNA evidence in a more significant and consistent manner. ^
Resumo:
Purpose: Mounting evidence supports the clinical significance of gene mutations and immunogenetic features in common mature B-cell malignancies.
Experimental Design: We undertook a detailed characterization of the genetic background of splenic marginal zone lymphoma (SMZL), using targeted resequencing and explored potential clinical implications in a multinational cohort of 175 patients with SMZL.
Results: We identified recurrent mutations in TP53 (16%), KLF2 (12%), NOTCH2 (10%), TNFAIP3 (7%), MLL2 (11%), MYD88 (7%), and ARID1A (6%), all genes known to be targeted by somatic mutation in SMZL. KLF2 mutations were early, clonal events, enriched in patients with del(7q) and IGHV1-2*04 B-cell receptor immunoglobulins, and were associated with a short median time to first treatment (0.12 vs. 1.11 years; P = 0.01). In multivariate analysis, mutations in NOTCH2 [HR, 2.12; 95% confidence interval (CI), 1.02–4.4; P = 0.044] and 100% germline IGHV gene identity (HR, 2.19; 95% CI, 1.05–4.55; P = 0.036) were independent markers of short time to first treatment, whereas TP53 mutations were an independent marker of short overall survival (HR, 2.36; 95 % CI, 1.08–5.2; P = 0.03).
Conclusions: We identify key associations between gene mutations and clinical outcome, demonstrating for the first time that NOTCH2 and TP53 gene mutations are independent markers of reduced treatment-free and overall survival, respectively.
Resumo:
Advances in culture independent technologies over the last decade have highlighted the pivotal role which the gut microbiota plays in maintaining human health. Conversely, perturbations to the composition or actions of the ‘normal/functioning’ microbiota have been frequently associated with the pathogenesis of several disease states. Therefore the selective modulation of enteric microbial communities represents a viable target for the development of novel treatments for such diseases. Notably, while bovine whey proteins and exercise have been shown to positively influence several physiological processes, such as energy balance, their effect on the composition or functionality of the gut microbiota remains largely unknown. In this thesis, a variety of ex vivo, murine and human models are used in conjunction with high-throughput DNA sequencing-based analysis to provide valuable and novel insights into the impact of both whey proteins and exercise on enteric microbial communities. Overall the results presented in this thesis highlight that the consumption both whey protein isolate (WPI), and individual component proteins of whey such as bovine serum albumin (BSA) and lactoferrin, reduce high fat diet associated body weight gain and are associated with beneficial alterations within the murine gut microbiota. Although the impact of exercise on enteric microbial communities remains less clear, it may be that longer term investigations are required for the true effect of exercise on the gut microbiota to be fully elucidated.
Resumo:
The p53 tumor suppressor gene is the most frequently mutated gene in human cancer; this gene is mutated in up to 50% of human tumors. It has a critical role in the cell cycle, apoptosis and cell senescence, and it participates in many crucial physiological and pathological processes. Polymorphisms of p53 have been suggested to be associated with genetically determined susceptibility in various types of cancer. Another process involved with the development and progression of tumors is DNA hypermethylation. Aberrant methylation of the promoter is an alternative epigenetic change in genetic mechanisms, leading to tumor suppressor gene inactivation. In the present study, we examined the TP53 Arg72Pro and Pro47Ser polymorphisms using PCR-RFLP and the pattern of methylation of the p53 gene by methylation-specific PCR in 90 extra-axial brain tumor samples. Patients who had the allele Pro of the TP53 Arg72Pro polymorphism had an increased risk of tumor development ( odds ratio, OR = 3.23; confidence interval at 95%, 95% CI = 1.71-6.08; P = 0.003), as did the allele Ser of TP53 Pro47Ser polymorphism (OR = 1.28; 95% CI = 0.03-2.10; P = 0.01). Comparison of overall survival of patients did not show significant differences. In the analysis of DNA methylation, we observed that 37.5% of meningiomas, 30% of schwannomas and 52.6% of metastases were hypermethylated, suggesting that methylation is important for tumor progression. We suggest that TP53 Pro47Ser and Arg72Pro polymorphisms and DNA hypermethylation are involved in susceptibility for developing extra-axial brain tumors.
Resumo:
The Australian-bred lucerne cultivars, Trifecta and Sequel, were found to possess useful levels of resistance to both Colletotrichum trifolii races 1 and 2. Race 2 has only been previously observed in the United States and surveys did not reveal its presence in Australia. Multilocus fingerprinting using random amplified polymorphic DNA (RAPDs) analysis revealed low diversity (<10% dissimilarity) within Australian C. trifolii collections, and between the Australian race 1 isolates and a US race 2 isolate. Studies on the inheritance of resistance to C. trifolii race 1 in individual clones from Trifecta and Sequel revealed the presence of 2 different genetic mechanisms. One inheritance was for resistance as a recessive trait, and the other indicated that resistance was dominant. The recessive system has never been previously reported, whereas in the US, 2 completely dominant and independent tetrasomic genes Anl and Ant have been reported to condition C. trifolii resistance. It was not possible to fit the observed segregations from our studies to a single-gene model. In contrast to US studies, clones of cv. Sequel exhibiting the recessive resistance reacted differently to spray and stem injection with C. trifolii inoculum, being resistant to the former and susceptible to the latter, providing additional evidence for the presence of a different genetic mechanism conditioning resistance to those previously reported in the US. As C. trifolii is one of the most serious diseases of lucerne worldwide, the future development of molecular markers closely linked to the dominant and recessive resistances identified in these studies, and the relationships between these resistances and Anl and Ans as determined by genetic mapping, appear to be useful areas of future study.
Resumo:
The human Rad52 protein stimulates joint molecule formation by hRad51, a homologue of Escherichia coli RecA protein. Electron microscopic analysis of hRad52 shows that it self-associates to form ring structures with a diameter of approximately 10 nm. Each ring contains a hole at its centre. hRad52 binds to single and double-stranded DNA. In the ssDNA-hRad52 complexes, hRad52 was distributed along the length of the DNA, which exhibited a characteristic "beads on a string" appearance. At higher concentrations of hRad52, "super-rings" (approximately 30 nm) were observed and the ssDNA was collapsed upon itself. In contrast, in dsDNA-hRad52 complexes, some regions of the DNA remained protein-free while others, containing hRad52, interacted to form large protein-DNA networks. Saturating concentrations of hRad51 displaced hRad52 from ssDNA, whereas dsDNA-Rad52 complexes (networks) were more resistant to hRad51 invasion and nucleoprotein filament formation. When Rad52-Rad51-DNA complexes were probed with gold-conjugated hRad52 antibodies, the presence of globular hRad52 structures within the Rad51 nucleoprotein filament was observed. These data provide the first direct visualisation of protein-DNA complexes formed by the human Rad51 and Rad52 recombination/repair proteins.
Resumo:
Individuals carrying BRCA2 mutations are predisposed to breast and ovarian cancers. Here, we show that BRCA2 plays a dual role in regulating the actions of RAD51, a protein essential for homologous recombination and DNA repair. First, interactions between RAD51 and the BRC3 or BRC4 regions of BRCA2 block nucleoprotein filament formation by RAD51. Alterations to the BRC3 region that mimic cancer-associated BRCA2 mutations fail to exhibit this effect. Second, transport of RAD51 to the nucleus is defective in cells carrying a cancer-associated BRCA2 truncation. Thus, BRCA2 regulates both the intracellular localization and DNA binding ability of RAD51. Loss of these controls following BRCA2 inactivation may be a key event leading to genomic instability and tumorigenesis.
Resumo:
Random amplified polymorphic DNA analysis was applied to DNAs extracted from Trichuris trichiura eggs recovered from human fecal samples. Four out of 6 primers tested displayed 18 distinct and well defined polymorphic patterns, ranging from 650 to 3200 base pairs. These results, upon retrieval and DNA sequencing of some of these bands from agarose gels, might help in establishing T. trichiura specific genetic markers, not available yet, and an important step to design primers to be used in molecular diagnosis approaches.
Resumo:
Cerebrospinal fluid (CSF) samples from clinically diagnosed patients with detectable Angiostrongylus canto-nensis-specific antibodies (n = 10), patients with clinically suspected cases that tested negative for A. cantonensis-an-tibodies (n = 5) and patients with cerebral gnathostomiasis (n = 2) and neurocysticercosis (n = 2) were examined by a single-step polymerase chain reaction (PCR) method using the AC primers for the 66-kDa native protein gene. The PCR method detected A. cantonensis DNA in CSF samples from four of 10 serologically confirmed angiostrongyliasis cases. The PCR results were negative for the remaining CSF samples. The nucleotide sequences of three positive CSF-PCR samples shared 98.8-99.2% similarity with the reference sequence of A. cantonensis. These results indicate the potential application of this PCR assay with clinical CSF samples for additional support in the confirmation of eosinophilic meningitis due to A. cantonensis.
Resumo:
There is strong evidence suggesting the presence of a genetic component in the aetiology of multiple myeloma (MM). However no genetic risk factors have been unequivocally established so far. To further our understanding of the genetic determinants of MM risk, a promising strategy is to collect a large set of patients in a consortium, as successfully done for other cancers. In this article, we review the main findings in the genetic susceptibility and pharmacogenetics of MM and present the strategy of the IMMEnSE (International Multiple Myeloma rESEarch) consortium in contributing to determine the role of genetic variation in pharmacogenetics and in MM risk.
Resumo:
The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.