998 resultados para genetic score
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed to investigate the following environmental effects in Suffolk lambing: contemporary groups, type of birth, and age of animal and age of dam at lambing on conformation (C), precocity (P), musculature (M), and body weight at postweaning (W), and the heritability coefficients and genetic correlations among these traits. Contemporary groups, type of birth, and age of animal and age of dam at lambing were significant for W. For C, all the effects studied were significant, except linear and quadratic effects of age of the animal. For P, all effects studied were significant, except the quadratic effect of age of the animal. For M, the effects of contemporary group, type of birth, and the linear effect of the age of the animal were significant. Heritability estimates were 0.07 +/- 0.03, 0.14 +/- 0.03, 0.09 +/- 0.03, and 0.11 +/- 0.03 for C, P, M, and W, respectively, indicating a positive low response for direct selection. Estimates of genetic correlations among the visual scores (C, P, and M) and W were moderate to highly favorable and positive, ranging from 0.48 to 0.90. These results indicate that selection for visual scores will increase body weight.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
BACKGROUND: During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection. METHODS: Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture. RESULTS: Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele 'Q' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele 'q'. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways 'dendritic cell maturation' and 'acute phase response signaling', whereas cell culture affected biological processes involved in 'cellular development'. CONCLUSIONS: The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.
Resumo:
In order to better take advantage of the abundant results from large-scale genomic association studies, investigators are turning to a genetic risk score (GRS) method in order to combine the information from common modest-effect risk alleles into an efficient risk assessment statistic. The statistical properties of these GRSs are poorly understood. As a first step toward a better understanding of GRSs, a systematic analysis of recent investigations using a GRS was undertaken. GRS studies were searched in the areas of coronary heart disease (CHD), cancer, and other common diseases using bibliographic databases and by hand-searching reference lists and journals. Twenty-one independent case-control studies, cohort studies, and simulation studies (12 in CHD, 9 in other diseases) were identified. The underlying statistical assumptions of the GRS using the experience of the Framingham risk score were investigated. Improvements in the construction of a GRS guided by the concept of composite indicators are discussed. The GRS will be a promising risk assessment tool to improve prediction and diagnosis of common diseases.^
Resumo:
There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.
Resumo:
Survival or longevity is an economically important trait in beef cattle. The main inconvenience for its inclusion in selection criteria is delayed recording of phenotypic data and the high computational demand for including survival in proportional hazard models. Thus, identification of a longevity-correlated trait that could be recorded early in life would be very useful for selection purposes. We estimated the genetic relationship of survival with productive and reproductive traits in Nellore cattle, including weaning weight (WW), post-weaning growth (PWG), muscularity (MUSC), scrotal circumference at 18 months (SC18), and heifer pregnancy (HP). Survival was measured in discrete time intervals and modeled through a sequential threshold model. Five independent bivariate Bayesian analyses were performed, accounting for cow survival and the five productive and reproductive traits. Posterior mean estimates for heritability (standard deviation in parentheses) were 0.55 (0.01) for WW, 0.25 (0.01) for PWG, 0.23 (0.01) for MUSC, and 0.48 (0.01) for SC18. The posterior mean estimates (95% confidence interval in parentheses) for the genetic correlation with survival were 0.16 (0.13-0.19), 0.30 (0.25-0.34), 0.31 (0.25-0.36), 0.07 (0.02-0.12), and 0.82 (0.78-0.86) for WW, PWG, MUSC, SC18, and HP, respectively. Based on the high genetic correlation and heritability (0.54) posterior mean estimates for HP, the expected progeny difference for HP can be used to select bulls for longevity, as well as for post-weaning gain and muscle score.
Resumo:
Familial hyperaldosteronism type II (FH-II) is caused by adrenocortical hyperplasia or aldosteronoma or both and is frequently transmitted in an autosomal dominant fashion. Unlike FH type I (FI-I-I), which results from fusion of the CYP11B1 and CYP11B2 genes, hyperaldosteronism in FH-II is not glucocorticoid remediable. A large family with FH-II was used for a genome wide search and its members were evaluated by measuring the aldosterone:renin ratio. In those with an increased ratio, FH-II was confirmed by fludrocortisone suppression testing. After excluding most of the genome, genetic linkage was identified with a maximum two point lod score of 3.26 at theta =0, between FH-II in this family and the polymorphic markers D7S511, D7S517, and GATA24F03 on chromosome 7,a region that corresponds to cytogenetic band 7p22. This is the first identified locus for FH-II; its molecular elucidation may provide further insight into the aetiology of primary aldosteronism.
Resumo:
The identification of genes responsible for the rare cases of familial leukemia may afford insight into the mechanism underlying the more common sporadic occurrences. Here we test a single family with 11 relevant meioses transmitting autosomal dominant acute myelogenous leukemia (AML) and myelodysplasia for linkage to three potential candidate loci. In a different family with inherited AML, linkage to chromosome 21q22.1-22.2 was recently reported; we exclude linkage to 21q22.1-22.2, demonstrating that familial AML is a heterogeneous disease. After reviewing familial leukemia and observing anticipation in the form of a declining age of onset with each generation, we had proposed 9p21-22 and 16q22 as additional candidate loci. Whereas linkage to 9p21-22 can be excluded, the finding of a maximum two-point LOD score of 2.82 with the microsatellite marker D16S522 at a recombination fraction theta = 0 provides evidence supporting linkage to 16q22. Haplotype analysis reveals a 23.5-cM (17.9-Mb) commonly inherited region among all affected family members extending from D16S451 to D1GS289, In order to extract maximum linkage information with missing individuals, incomplete informativeness with individual markers in this interval, and possible deviance from strict autosomal dominant inheritance, we performed nonparametric linkage analysis (NPL) and found a maximum NPL statistic corresponding to a P-value of .00098, close to the maximum conditional probability of linkage expected for a pedigree with this structure. Mutational analysis in this region specifically excludes expansion of the AT-rich minisatellite repeat FRA16B fragile site and the CAG trinucleotide repeat in the E2F-4 transcription factor. The ''repeat expansion detection'' method, capable of detecting dynamic mutation associated with anticipation, more generally excludes large CAG repeat expansion as a cause of leukemia in this family.
Resumo:
Purpose: Prostate cancer is the most common tumor in males in Brazil. Single nucleotide polymorphisms have been demonstrated to exist in the promoter regions of matrix metalloproteinase genes and they are associated with the development and progression of some cancers. We investigated the correlation between MMP1, 2, 7 and 9 polymorphisms with susceptibility to prostate cancer, and classic prognostic parameters of prostate cancer. Materials and Methods: Genomic DNA was extracted using conventional protocols. The DNA sequence containing the polymorphic site was amplified by realtime polymerase chain reaction using TaqMan (R) fluorescent probes. Results: For the MMP1 gene the polymorphic allele was more common in the control group than in the prostate cancer group (p <0.001). For the MMP9 gene the incidence of the polymorphic homozygote genotype was higher in the prostate cancer group (p <0.001). For higher stage tumors (pT3) a polymorphic allele in the MMP2 gene was more common (p = 0.026). When considering Gleason score, the polymorphic homozygote genotype of MMP9 was more common in Gleason 6 or less tumors (p = 0.003), while a polymorphic allele in the MMP2 gene was more common in Gleason 7 or greater tumors (p = 0.042). Conclusions: MMP1 and MMP2 may protect against prostate cancer development and MMP9 may be related to higher risk. In contrast, MMP9 polymorphism was associated with a lower Gleason score and MMP2 polymorphism was associated with nonorgan confined disease.
Resumo:
Records of 18,770 Nelore animals, born from 1975 to 2002, in 8 herds participating in the Nelore Cattle Breeding Program, were analyzed to estimate genetic parameters for mature BW. The mature BW were analyzed as a single BW taken closest to 4.5 yr of age for each cow in the data file, considering BW starting from 2 (W2Y_S), 3 (W3Y_S), or 4 (W4Y_S) yr of age or as repeated records, including all BW starting from 2 (W2Y_R), 3 (W3Y_R), or 4 (W4Y_R) yr of age. The variance components were estimated by restricted maximum likelihood, fitting univariate and bivariate animal models, including weaning weight. The heritability estimates were 0.29, 0.34, 0.36, 0.41, 0.44, and 0.46 for W2Y_S, W3Y_S, W4Y_S, W2Y_R, W3Y_R, and W4Y_R, respectively. The repeatability estimates for W2Y_R, W3Y_R, and W4Y_R were 0.59, 0.64, and 0.72, respectively. Larger accuracy values associated with the EBV were obtained in the repeated records models. The results indicated the bivariate repeated records model as the most appropriate for analyzing mature BW.
Resumo:
We previously reported a Vietnamese-American family with isolated autosomal dominant occipital cephalocele. Upon further neuroimaging studies, we have recharacterized this condition as autosomal dominant Dandy-Walker with occipital cephalocele (ADDWOC). A similar ADDWOC family from Brazil was also recently described. To determine the genetic etiology of ADDWOC, we performed genome-wide linkage analysis on members of the Vietnamese-American and Brazilian pedigrees. Linkage analysis of the Vietnamese-American family identified the ADDWOC causative locus on chromosome 2q36.1 with a multipoint parametric LOD score of 3.3, while haplotype analysis refined the locus to 1.1 Mb. Sequencing of the five known genes in this locus did not identify any protein-altering mutations. However, a terminal deletion of chromosome 2 in a patient with an isolated case of Dandy-Walker malformation also encompassed the 2q36.1 chromosomal region. The Brazilian pedigree did not show linkage to this 2q36.1 region. Taken together, these results demonstrate a locus for ADDWOC on 2q36.1 and also suggest locus heterogeneity for ADDWOC.
Resumo:
Introduction. This study aims to compare the molecular gene expression during ischemia reperfusion injury. Several surgical times were considered: in the beginning of the harvesting (T0), at the end of the cold ischemia period (T1), and after reperfusion (T2) and compared with graft dysfunction after liver transplant (OLT). Methods. We studied 54 patients undergoing OLT. Clinical, laboratory data, and histologic data (Suzuki classification) as well as the Survival Outcomes Following Liver Transplantation (SOFT) score were used and compared with the molecular gene expression of the following genes: Interleukin (IL)-1b, IL-6, tumor necrosis factor-a, perforin, E-selectin (SELE), Fas-ligand, granzyme B, heme oxygenase-1, and nitric oxide synthetase. Results. Fifteen patients presented with graft dysfunction according to SOFT criteria. No relevant data were obtained by comparing the variables graft dysfunction and histologic variables. We observed a statistically significant relation between SELE at T0 (P ¼ .013) and IL-1b at T0 (P ¼ .028) and early graft dysfunction. Conclusions. We conclude that several genetically determined proinflammatory expressions may play a critical role in the development of graft dysfunction after OLT.
Resumo:
Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal degeneration characterized by multiple glistening intraretinal dots scattered over the fundus, degeneration of the retina, and sclerosis of the choroidal vessels, ultimately resulting in progressive night blindness and constriction of the visual field. Although BCD has been associated with abnormalities in fatty-acid metabolism and absence of fatty-acid binding by two cytosolic proteins, the genetic basis of BCD is unknown. We report linkage of the BCD locus to D4S426 (maximum LOD score [Z(max)] 4.81; recombination fraction [straight theta] 0), D4S2688 (Zmax=3.97; straight theta=0), and D4S2299 (Zmax=5.31; straight theta=0), on chromosome 4q35-4qtel. Multipoint analysis confirmed linkage to the region telomeric of D4S1652 with a Z(max) of 5.3 located 4 cM telomeric of marker D4S2930.