939 resultados para gene activation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Developmental progression and differentiation of distinct cell types depend on the regulation of gene expression in space and time. Tools that allow spatial and temporal control of gene expression are crucial for the accurate elucidation of gene function. Most systems to manipulate gene expression allow control of only one factor, space or time, and currently available systems that control both temporal and spatial expression of genes have their limitations. We have developed a versatile two-component system that overcomes these limitations, providing reliable, conditional gene activation in restricted tissues or cell types. This system allows conditional tissue-specific ectopic gene expression and provides a tool for conditional cell type- or tissue-specific complementation of mutants. The chimeric transcription factor XVE, in conjunction with Gateway recombination cloning technology, was used to generate a tractable system that can efficiently and faithfully activate target genes in a variety of cell types. Six promoters/enhancers, each with different tissue specificities (including vascular tissue, trichomes, root, and reproductive cell types), were used in activation constructs to generate different expression patterns of XVE. Conditional transactivation of reporter genes was achieved in a predictable, tissue-specific pattern of expression, following the insertion of the activator or the responder T-DNA in a wide variety of positions in the genome. Expression patterns were faithfully replicated in independent transgenic plant lines. Results demonstrate that we can also induce mutant phenotypes using conditional ectopic gene expression. One of these mutant phenotypes could not have been identified using noninducible ectopic gene expression approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interleukin-2 is one of the lymphokines secreted by T helper type 1 cells upon activation mediated by T-cell receptor (TCR) and accessory molecules. The ability to express IL-2 is correlated with T-lineage commitment and is regulated during T cell development and differentiation. Understanding the molecular mechanism of how IL-2 gene inducibility is controlled at each transition and each differentiation process of T-cell development is to understand one aspect of T-cell development. In the present study, we first attempted to elucidate the molecular basis for the developmental changes of IL-2 gene inducibility. We showed that IL-2 gene inducibility is acquired early in immature CD4- CD8-TCR- thymocytes prior to TCR gene rearrangement. Similar to mature T cells, a complete set of transcription factors can be induced at this early stage to activate IL-2 gene expression. The progression of these cells to cortical CD4^+CD8^+TCR^(1o) cells is accompanied by the loss of IL-2 gene inducibility. We demonstrated that DNA binding activities of two transcription factors AP-1 and NF-AT are reduced in cells at this stage. Further, the loss of factor binding, especially AP-1, is attributable to the reduced ability to activate expression of three potential components of AP-1 and NF-AT, including c-Fos, FosB, and Fra-2. We next examined the interaction of transcription factors and the IL-2 promoter in vivo by using the EL4 T cell line and two non-T cell lines. We showed an all-or-none phenomenon regarding the factor-DNA interaction, i.e., in activated T cells, the IL-2 promoter is occupied by sequence-specific transcription factors when all the transcription factors are available; in resting T cells or non-T cells, no specific protein-DNA interaction is observed when only a subset of factors are present in the nuclei. Purposefully reducing a particular set of factor binding activities in stimulated T cells using pharmacological agents cyclosporin A or forskolin also abolished all interactions. The results suggest that a combinatorial and coordinated protein-DNA interaction is required for IL-2 gene activation. The thymocyte experiments clearly illustrated that multiple transcription factors are regulated during intrathymic T-cell development, and this regulation in tum controls the inducibility of the lineage-specific IL-2 gene. The in vivo study of protein-DNA interaction stressed the combinatorial action of transcription factors to stably occupy the IL-2 promoter and to initiate its transcription, and provided a molecular mechanism for changes in IL-2 gene inducibility in T cells undergoing integration of multiple environmental signals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Developmental signals in metazoans play critical roles in inducing cell differentiation from multipotent progenitors. The existing paradigm posits that the signals operate directly through their downstream transcription factors to activate expression of cell type-specific genes, which are the hallmark of cell identity. We have investigated the mechanism through which Wnt signaling induces osteoblast differentiation in an osteoblast-adipocyte bipotent progenitor cell line. Unexpectedly, Wnt3a acutely suppresses the expression of a large number of genes while inducing osteoblast differentiation. The suppressed genes include Pparg and Cebpa, which encode adipocyte-specifying transcription factors and suppression of which is sufficient to induce osteoblast differentiation. The large scale gene suppression induced by Wnt3a corresponds to a global decrease in histone acetylation, an epigenetic modification that is associated with gene activation. Mechanistically, Wnt3a does not alter histone acetyltransferase or deacetylase activities but, rather, decreases the level of acetyl-CoA in the nucleus. The Wnt-induced decrease in histone acetylation is independent of β-catenin signaling but, rather, correlates with suppression of glucose metabolism in the tricarboxylic acid cycle. Functionally, preventing histone deacetylation by increasing nucleocytoplasmic acetyl-CoA levels impairs Wnt3a-induced osteoblast differentiation. Thus, Wnt signaling induces osteoblast differentiation in part through histone deacetylation and epigenetic suppression of an alternative cell fate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Annexin 1 is a 37-kDa protein that has complex intra- and extracellular effects. To discover whether the absence of this protein alters bone development, we monitored this event in the annexin-A1 null mice in comparison with littermate wild-type controls. METHODS: Radiographic and densitometry methods were used for the assessment of bone in annexin-A1 null mice at a gross level. We used whole-skeleton staining, histological analysis, and Western blotting techniques to monitor changes at the tissue and cellular levels. RESULTS: There were no gross differences in the appendicular skeleton between the genotypes, but an anomalous development of the skull was observed in the annexin-A1 null mice. This was characterized in the newborn annexin-A1 null animals by a delayed intramembranous ossification of the skull, incomplete fusion of the interfrontal suture and palatine bone, and the presence of an abnormal suture structure. The annexin-A1 gene was shown to be active in osteocytes during this phase and COX-2 was abundantly expressed in cartilage and bone taken from annexin-A1 null mice. CONCLUSIONS: Expression of the annexin-A1 gene is important for the normal development of the skull in mice, possibly through the regulation of osteoblast differentiation and a secondary effect on the expression of components of the cPLA2-COX-2 system. © 2007 Wiley-Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T b) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1- yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T b of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T b nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T b response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T b. Copyright © 2007 Society for Neuroscience.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this dissertation, I identify two molecular mechanisms by which transcription factors cooperate with their co-regulators to mediate gene regulation. In the first part, I demonstrate that p53 directly recruits LSD1, a histone demethylase, to AFP chromatin to demethylate methylated H3K4 and actively mediate transcription repression. Loss of p53 and LSD1 interaction at chromatin leads to derepression of AFP in hepatic cells. In the second part, I reveal that Trim24 functions as an important co-activator in ERα-mediated gene activation in response to estrogen stimulation. Trim24 is recruited by ligand-bound ERα to chromatin and stabilizes ERα-chromatin interactions by binding to histone H3 via its PHD finger, which preferentially recognizes unmethylated H3K4. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To answer the question whether increased energy demand resulting from myocyte hypertrophy and enhanced $\beta$-myosin heavy chain mRNA, contractile protein synthesis and assembly leads to mitochondrial proliferation and differentiation, we set up an electrical stimulation model of cultured neonatal rat cardiac myocytes. We describe, as a result of increased contractile activity, increased mitochondrial profiles, cytochrome oxidase mRNA, and activity, as well as a switch in mitochondrial carnitine palmitoyltransferase-I (CPT-I) from the liver to muscle isoform. We investigate physiological pathways that lead to accumulation of gene transcripts for nuclear encoded mitochondrial proteins in the heart. Cardiomyocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation (c-fos, c-jun, junB, nuclear respiratory factor 1 (Nrf-1)), mitochondrial proliferation (cytochrome c (Cyt c), cytochrome oxidase), and mitochondrial differentiation (carnitine palmitonyltransferase I (CPT-I) isoforms) were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25-3 hr) and followed by c-jun (0.5-3 hr), junB (0.5-6 hr), NRF-1 (1-12 hr), Cyt c (12-72 hr), cytochrome c oxidase (12-72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA. Electrical stimulation increased c-fos, $\beta$-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element (CRE), and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the Nrf-1 and CRE sites inhibited the induction by electrical stimulation or by transfection of c-jun into non-paced cardiac myocytes whereas mutation of the Sp-1 site maintained or increased the fold induction. This is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c. Overexpression of c-jun by transfection also activates the Nrf-1 and Cyt c mRNA sequentially. Electrical stimulation of cardiac myocytes activates the c-Jun-N-terminal kinase so that the fold-activation of the cyt c promoter is increased by pacing when either c-jun or c-fos/c-jun are cotransfected. We have identified physical association of Nrf-1 protein with the Nrf-1 enhancer element and of c-Jun with the CRE binding sites on the Cyt c promoter. This is the first demonstration that induction of Nrf-1 and c-Jun by pacing of cardiac myocytes directly mediates Cyt c gene expression and mitochondrial proliferation in response to hypertrophic stimuli in the heart.^ Subsequent to gene activation pathways that lead to mitochondrial proliferation, we observed an isoform switch in CPT-I from the liver to muscle mRNA. We have found that the half-life for the muscle CPT-I is not affected by electrical stimulation, but electrical decrease the T1/2 in the liver CPT-I by greater than 50%. This suggests that the liver CPT-I switch to muscle isoform is due to (1) a decrease in T1/2 of liver CPT-I and (2) activation of muscle CPT-Itranscripts by electrical stimulation. (Abstract shortened by UMI.) ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spatial learning requires the septohippocampal pathway. The interaction of learning experience with gene products to modulate the function of a pathway may underlie use-dependent plasticity. The regulated release of nerve growth factor (NGF) from hippocampal cultures and hippocampus, as well as its actions on cholinergic septal neurons, suggest it as a candidate protein to interact with a learning experience. A method was used to evaluate NGF gene-experience interaction on the septohippocampal neural circuitry in mice. The method permits brain region-specific expression of a new gene by using a two-component approach: a virus vector directing expression of cre recombinase; and transgenic mice carrying genomic recombination substrates rendered transcriptionally inactive by a “floxed” stop cassette. Cre recombinase vector delivery into transgenic mouse hippocampus resulted in recombination in 30% of infected cells and the expression of a new gene in those cells. To examine the interaction of the NGF gene and experience, adult mice carrying a NGF transgene with a floxed stop cassette (NGFXAT) received a cre recombinase vector to produce localized unilateral hippocampal NGF gene expression, so-called “activated” mice. Activated and control nonactivated NGFXAT mice were subjected to different experiences: repeated spatial learning, repeated rote performance, or standard vivarium housing. Latency, the time to complete the learning task, declined in the repeated spatial learning groups. The measurement of interaction between NGF gene expression and experience on the septohippocampal circuitry was assessed by counting retrogradely labeled basal forebrain cholinergic neurons projecting to the hippocampal site of NGF gene activation. Comparison of all NGF activated groups revealed a graded effect of experience on the septohippocampal pathway, with the largest change occurring in activated mice provided with repeated learning experience. These data demonstrate that plasticity of the adult spatial learning circuitry can be robustly modulated by experience-dependent interactions with a specific hippocampal gene product.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A variety of molecular genetic approaches were used to study the effect of rabies virus (RV) infection on host gene expression in mouse brain. The down-regulation of gene expression was found to be a major effect of RV infection by using subtraction hybridization. However, a combination of techniques identified approximately 39 genes activated by infection. These included genes involved in regulation of cell metabolism, protein synthesis, synaptic activity, and cell growth and differentiation. Northern blot analysis to monitor temporal activation of several of these genes following infection revealed essentially two patterns of activation: (i) an early response with up-regulation beginning within 3 days after infection and correlating with transcription of RV nuclear protein; and (ii) a late response with enhanced expression occurring at days 6–7 after infection and associated with peak RV replication. The gene activation patterns and the known functions of their products suggest that a number of host genes may be involved in the replication and spread of RV in the brain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In response to IFN-γ, the latent cytoplasmic Stat1 (signal transducer and activator of transcription) proteins translocate into the nucleus and activate transcription. We showed previously that Stat1 recruits a group of nuclear proteins, among them MCM5 (minichromosome maintenance) and MCM3, for transcription activation. MCM5 directly interacts with the transcription activation domain (TAD) of Stat1 and enhances Stat1-mediated transcription activation. In this report, we identified two specific residues (R732, K734) in MCM5 that are required for the direct interaction between Stat1 and MCM5 both in vitro and in vivo. MCM5 containing mutations of R732/K734 did not enhance Stat1-mediated transcription activation in response to IFN-γ. In addition, it also failed to form complexes with other MCM proteins in vivo, suggesting that these two residues may be important for an interaction domain in MCM5. Furthermore, MCM5 bearing mutations in its ATPase and helicase domains did not enhance Stat1 activity. In vitro binding assays indicate that MCM3 does not interact directly with Stat1, suggesting that the presence of MCM3 in the group of Stat1TAD-interacting proteins is due to the association of MCM3 with MCM5. Finally, gel filtration analyses of nuclear extracts from INF-γ-treated cells demonstrate that there is a MCM5/3 subcomplex coeluting with Stat1. Together, these results strongly suggest that Stat1 recruits a MCM5/3 subcomplex through direct interaction with MCM5 in the process of IFN-γ-induced gene activation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An important component of cytokine regulation of cell growth and differentiation is rapid transcriptional activation of genes by the JAK-STAT (signal transducer and activator of transcription) signaling pathway. Ligation of cytokine receptors results in tyrosine phosphorylation and activation of receptor-associated Jak protein tyrosine kinases and cytoplasmic STAT transcription factors, which then translocate to the nucleus. We describe the interruption of cytokine triggered JAK-STAT signals by cAMP, the calcium ionophore ionomycin, and granulocyte/macrophage colony-stimulating factor. Jak1 kinase activity, interleukin 6-induced gene activation, Stat3 tyrosine phosphorylation, and DNA-binding were inhibited, as was activation of Jak1 and Stat1 by interferon gamma. The kinetics and requirement for new RNA and protein synthesis for inhibition of interleukin 6 by ionomycin and GM-CSF differed, but both agents increased the association of Jak1 with protein tyrosine phosphatase ID (SH2-containing phosphatase 2). Our results demonstrate that crosstalk with distinct signaling pathways can inhibit JAK-STAT signal transduction, and suggest approaches for modulating cytokine activity during immune responses and inflammatory processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conditional gene expression and gene deletion are important experimental approaches for examining the functions of particular gene products in development and disease. The cre-loxP system from bacteriophage P1 has been used in transgenic animals to induce site-specific DNA recombination leading to gene activation or deletion. To regulate the recombination in a spatiotemporally controlled manner, we constructed a recombinant adenoviral vector, Adv/cre, that contained the cre recombinase gene under regulation of the herpes simplex virus thymidine kinase promoter. The efficacy and target specificity of this vector in mediating loxP-dependent recombination were analyzed in mice that had been genetically engineered to contain loxP sites in their genome. After intravenous injection of the Adv/cre vector into adult animals, the liver and spleen showed the highest infectivity of the adenovirus as well as the highest levels of recombination, whereas other tissues such as kidney, lung, and heart had lower levels of infection and recombination. Only trace levels of recombination were detected in the brain. However, when the Adv/cre vector was injected directly into specific regions of the adult brain, including the cerebral cortex, hippocampus, and cerebellum, recombination was detectable at the injection site. Furthermore, when the Adv/cre vector was injected into the forebrains of neonatal mice, the rearranged toxP locus from recombination could be detected in the injected regions for at least 8 weeks. Taken together, these results demonstrate that the Adv/cre vector expressing a functional cre protein is capable of mediating loxP-dependent recombination in various tissues and the recombined gene locus may in some cases be maintained for an extended period. The use of the adenovirus vector expressing cre combined with localized delivery to specific tissues may provide an efficient means to achieve conditional gene expression or knockout with precise spatiotemporal control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe a complete gene family encoding phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) in one particular plant species. In parsley (Petroselinum crispum), the PAL gene family comprises two closely related members, PAL1 and PAL2, whose TATA-proximal promoter and coding regions are almost identical, and two additional members, PAL3 and PAL4, with less similarity to one another and to the PAL1 and PAL2 genes. Using gene-specific probes derived from the 5' untranslated regions of PAL1/2, PAL3, and PAL4, we determined the respective mRNA levels in parsley leaves and cell cultures treated with UV light or fungal elicitor and in wounded leaves and roots. For comparison, the functionally closely related cinnamate 4-hydroxylase (C4H) and 4-coumarate:CoA ligase (4CL) mRNAs were measured in parallel. The results indicate various degrees of differential responsiveness of PAL4 relative to the other PAL gene family members, in contrast to a high degree of coordination in the overall expression of the PAL, C4H, and 4CL genes. The only significant sequence similarities shared by all four PAL gene promoters are a TATA-proximal set of three putative cis-acting elements (boxes P, A, and L). None of these elements alone, or the promoter region containing all of them together, conferred elicitor or light responsiveness on a reporter gene in transient expression assays. The elements appear to be necessary but not sufficient for elicitor- or light-mediated PAL gene activation, similar to the situation previously reported for 4CL.