61 resultados para gastrula
Resumo:
A cDNA for a novel T-box containing gene was isolated from the amphioxus Branchiostoma belcheri. A molecular phylogenetic tree constructed from the deduced amino acid sequence of the isolated cDNA indicates that this gene belongs to the T-Brain subfamily. In situ hybridization reveals that the expression is first detected in the invaginating archenteron at the early gastrula stage and this expression is down-regulated at the neurula stage. In early larvae, the expression appears again and transcripts are detected exclusively in the pre-oral pit (wheel organ-Hatschek's pit of the adult). In contrast to the vertebrate counterparts, no transcripts are detected in the brain vesicle or nerve cord throughout the development. These results are interpreted to mean that a role of T-Brain products in vertebrate forebrain development was acquired after the amphioxus was split from the lineage leading to the vertebrates. On the other hand, comparison of the tissue-specific expression domain of T-Brain genes and other genes between amphioxus and vertebrates revealed that the pre-oral pit of amphioxus has several molecular features which are comparable to those of the vertebrate olfactory and hypophyseal placode. (C) 2002 Wiley-Liss, Inc.
Resumo:
Amphioxus Bblhx3 was identified as a LIM-homeobox gene expressed in gastrulae. Structural analysis suggested that it is a member of lhx3 but not of lhx1 gene group. Whole mount in situ hybridization revealed, that expression of Bblhx3 was initiated at the early gastrula stage and continued at least until 10-day larvae. Expression of Bblhx3 first appeared in the vegetal and future dorsal area in initial gastrulae and became restricted to the endoderm during gastrulation. In neurulae and early larvae, Bblhx3 was expressed in the developing neural tube, the notochord and preoral pit lineage. In 10-day larvae, Bblhx3 was expressed only in the preoral pit. This expression pattern is apparently distinct from that of vertebrate lhx3 genes that are not expressed during gastrulation. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The lancelet (amphioxus) embryo develops from a miolecithal egg and starts gastrulation when it is approximately 400 cells in size, in a fashion similar to that of some non-chordate deuterostomes. Throughout this type of gastrulation, the embryo develops characteristics such as the notochord and hollow nerve cord that commonly appear in chordates. beta-Catenin is an important factor in initiating body patterning. The behavior and developmental pattern of this protein in early lancelet development was examined in this study. Cytoplasmic beta-catenin was localized to the animal pole after fertilization and then was incorporated asymmetrically into the blastomeres during the first cleavage. Asymmetric distribution was observed at least until the 32-cell stage. The first nuclear localization was at the 64-cell stage, and involved all of the cells. At the initial gastrula stage, however, concentrated beta-catenin was found on the dorsal side. LiCl treatment affected the asymmetric pattern of beta-catenin during the first cleavage. LiCl also changed distribution of nuclear beta-catenin at the initial gastrula stage: distribution extended to cells on the animal side. Apparently associated with this change, expression domains of goosecoid, lhx3 and otx also changed to a radially symmetric pattern centered at the animal pole. However, LiCl-treated embryos were able to establish embryonic polarity. The present study suggests that in the lancelet embryo, polarity determination is independent of dorsal morphogenesis.
Resumo:
Lancelets (amphioxus), although showing the most similar anatomical features to vertebrates, never develop a vertebrate-like head but rather several structures specific to this animal. The lancelet anatomical specificity seems to be traceable to early developmental stages, such as the vertebrate dorsal and anterior-posterior determinations. The BMP and Wnt proteins play important roles in establishing the early basis of the dorsal structures and the head in vertebrates. The early behavior of BMP and Wnt may be also related to the specific body structures of lancelets. The expression patterns of a dpp-related gene, Bbbmp2/4, and two wnt-related genes, Bbwnt7 and Bbwnt8, have been studied in comparison with those of brachyury and Hnf-3 beta class genes The temporal expression patterns of these genes are similar to those of vertebrates; Bbbmp2/4 and Bbwnt8 are first expressed in the invaginating primitive gut and the equatorial region. respectively, at the initial gastrula stage. However, spatial expression pattern of Bbbmp2/4 differs significantly from the vertebrate cognates. It is expressed in the mid-dorsal inner layer of gastrulae and widely in the anterior region, in which vertebrates block BMP signaling, The present study suggests that the lancelet embryo may have two distinct developmental domains from the gastrula stage, the domains of which coincide later with the lateral diverticular and the somitocoelomic regions. The embryonic origin of the anterior-specific structures in lancelets corresponds to the anterior domain where Bbbmp2/4 is continuously expressed.
Resumo:
Mesoderm formation plays a crucial role in the establishment of the chordate body plan. In this regard, lancelet embryos develop structures such as the anteriorly extended notochord and the lateral divertecula in their anterior body. To elucidate the developmental basis of these structures, we examined the expression pattern of a lancelet twist-related gene, Bbtwist, from the late gastrula to larval stages. In late-gastrula embryos, the transcripts of Bbtwist were detected in the presumptive first pair of somites and the middorsal wall of the primitive gut. The expression of Bbtwist was then upregulated in the lateral wall of somites and the notochord. At the late-neurula stage, it was also expressed in the anterior wall of the primitive gut, as well as in the evaginating lateral diverticula. No signal was detected in the left lateral diverticulum when it was separated from the gut, while in the right one, the gene was expressed later during the formation of the head coelom in knife-shaped larvae, and in the anterior part of the notochord in the same larvae. In 36-h larvae, only faint expression was detected in the differentiating notochordal and paraxial mesoderm in the caudal region. These expression patterns suggest that Bbtwist is involved in early differentiation of mesodermal subsets as seen in Drosophila and vertebrates. The expression in the anterior notochord may be related to its anterior expansion. The expression in the anterior wall of the primitive gut and its derivative, the lateral diverticula, suggests that lancelets share the capability to produce a mesodermal population from the tip of the primitive gut with nonchordate deuterostome embryos. (C) 1998 Academic Press.
Resumo:
In amphioxus embryos, the nascent and early mesoderm (including chorda-mesoderm) was visualized by expression of a Brachyury gene (AmBra-2). A band of mesoderm is first detected encircling the earliest (vegetal plate stage) gastrula sub-equatorially. Soon thereafter, the vegetal plate invaginates. resulting in a cap-shaped gastrula with the mesoderm localized at the blastoporal lip and completely encircling the blastopore. As the gastrula stage progresses, DiI (a vital dye) labeling demonstrates that the entire mesoderm is internalized by a slight involution of the epiblast into the hypoblast all around the perimeter of the blastopore. Subsequently. during the early neurula stage, the internalized mesoderm undergoes anterior extension mid-dorsally (as notochord) and dorsolaterally (in paraxial regions when segments will later form). By the late neurula stage, AmBra-2 is no longer transcribed throughout the mesoderm as a whole; instead. expression is detectable only in the posterior mesoderm and in the notochord, but not in par axial mesoderm where definitive somites have formed.
Resumo:
The translationally controlled tumor protein (TCTP) is highly conserved and has been widely found in eukaryotic organisms. Here, we report the phylogenetic analysis and developmental expression of AmphiTCTP, a TCTP homologous gene in cephalochordate amphioxus. Phylogenetic analysis indicates that the putative protein of AmphiTCTP is close to its vertebrate orthologs. The mRNA of AmphiTCTP is found in fertilized eggs, early cleavage embryo and most of the early developmental stages by in situ hybridization and RT-PCR, but its expression is not detectable from late cleavage stage to mid-gastrula. The expression of AmphiTCTP in zygotes and early cleavage stages shows that AmphiTCTP may be a maternal gene. From the early neurula stage onward, AmphiTCTP transcript is localized in the presumptive notochord, presomitic mesoderm, and nascent somites. However, its expression is gradually down-regulated after the notochord and somites have been formed. The expression pattern of AmphiTCTP thus coincides with the differentiation of the notochord and somites, this suggests that AmphiTCTP may not be a housekeeping gene and may play an important role in mesoderm development. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
海水经济鱼类的养殖在我国已经形成第四次海水养殖浪潮,经济效益显著,有力地推动了我国海水养殖的产业结构调整和可持续发展。然而在海水养殖发展过程中也存在着诸多问题,尤其是早期发育阶段的高死亡率,严重制约了我国海水养殖产业的稳定和健康发展。 海水鱼类养殖的关键为高质量,高存活率苗种的生产和培育,由于鱼类种类繁多,生物多样性丰富,对应实际的繁育技术,尤其是新品种的开发,必须要做出相应的调整。这就要求我们必须对每一种鱼类早期发育有所了解,并将形态和组织上的数据用于指导生产。 本文通过显微观察和组织学研究,主要描述和研究了我国北方三种重要的海水经济鱼类(条斑星鲽、杂交鲆、条石鲷)的早期发育生物学,并结合实际生产进一步阐明关键期的产生原因,机理以及采用相应的对策。具体结果如下: 1.条斑星鲽:作为冷温性鲆鲽鱼类,条斑星鲽早期发育过程的特征主要有: ① 条斑星鲽受精卵无油球,卵子呈半浮性;不同步卵裂现象提前,发生在第三次卵裂;卵裂期裂球大小差异大。孵化过程较长,在水温8 ± 0.3℃,盐度33的条件下,经9 d孵化。条斑星鲽胚胎发育的不同时期对温度的敏感性不同,其中原肠期对温度比较敏感。 ②在8-10℃,盐度33的条件下,8-9 dph开口摄食。且开口时,其吻前端出现有一点状黑褐色素,构成了条斑星鲽仔鱼“开口期”的重要标志。卵黄囊于消失。在后期仔鱼末期,背鳍和臀鳍上形成特有的黑褐色条斑带。 ③杯状细胞首先出现在咽腔后部和食道前段,胃腺和幽门盲囊出现于29 dph,变态期始于30dph。在条斑星鲽早期发育过程中,观察到其直肠粘膜层细胞质出现大量嗜伊红颗粒,为仔鱼肠道上皮吸收的蛋白质。 ④首先淋巴化的免疫器官是头肾,然后是胸腺和脾脏,这与大部分硬骨鱼类不同。条斑星鲽除头肾和脾脏外,胸腺实质也形成MMCs。其中以脾脏形成MMCs最为丰富,形态多样。 2. 杂交鲆:为同属的牙鲆和夏鲆间的远缘杂交种,其发育过程的特点为: ① 在温度为15.4~16.0℃,杂交鲆胚胎从受精到孵化所需的时间为76 h左右,胚孔关闭前期,胚胎先出现视囊及克氏囊,而后形成体节。孵出前胚体在卵膜内环绕不到1周。 ② 孵化后消失。杂交鲆群体变态间隔长(34-60 dph),且变态高峰期出现的冠状幼鳍不明显(与母本牙鲆相比),数量为7-8根。 ③组织学观察发现,其消化系统中胃腺出现较晚,且胃腺发育过程缓慢(与母本牙鲆相比)。甲状腺滤泡增生不明显,颜色较浅,数量较少。杂交鲆在早期发育过程中,并没有出现鳔原基。 3. 条石鲷作为岩礁性的暖水性鱼类,早期发育过程也较为特殊,包括外形以及内部的器官结构。主要特点有: ① 受精卵:受精卵卵黄上具有龟裂结构,为鱼卵的分类特征之一。 ② 初孵仔鱼:初孵仔鱼背鳍膜上的黑色素,从体背面向背鳍膜边缘移动,到3dph仔鱼基本消失,此为本种仔鱼发育所特有的特点。 ③ 后期仔鱼和稚鱼:肠道肌肉层加厚明显,仔稚鱼胃肠排空率急剧上升,死亡率增加,通过改善常规的投饵方式部分解决了这个死亡高峰的问题。在幼鱼初期,牙齿融合为骨喙,为石鲷科鱼类的特征。 ④胸腺上皮分泌细胞:类似的现象同样在虹鳟鱼中发现,但是虹鳟鱼胸腺上皮分泌细胞不如条石鲷的丰富,同样也不如条石鲷的排列整齐,而是零星分布在胸腺上皮与咽腔接触的表面。除了正常的造血器官—脾脏和头肾外,肝脏、胰腺和鳔等多种组织等也出现MMCs,此现象在硬骨鱼类不多见,一般发生在软骨鱼类。
Resumo:
The effects of Heterosigma akashiwo on the early development of Argopecten irradians Lamarck: eggs, D-shaped larvae, eye-spot larvae and juveniles, were investigated under laboratory conditions. Exposing fertilized eggs to various densities of H. akashiwo algal culture revealed that the development of the embryos to the gastrula was significantly slowed at densities of more than 1 X 10(4) cells/ml algal cells, and mostly was arrested when the embryos reached the trochophore larvae stage. At this stage, several trochophore larvae were adhered together by the algal cells, resulting in the inhibition of their swimming activity. Larvae had still not developed into D-shaped larvae after 30 h, and therefore did not finish the hatching process. The attachment and adherence of the algal cells to the larvae might be an important process in the mechanism of the impact on egg hatching success. The activity of the D-shaped larvae was significantly inhibited after 48 h exposure to H. akashiwo at a density of 15 X 10(4) cells/ml and after 96 h at 10 X 10(4) cells/ml. The survival rate of the eye-spot larvae was decreased significantly after 48 h exposure to the algal culture at densities of more than 1 X 10(4) cells/ml. However, all the juveniles could survive and their climbing and attachment activity were not affected after 1 and 5 h exposure to the algal culture at all the various algal cell densities tested from 5 to 20 X 10(4) cells/ml. The results indicated that susceptibility of embryos or larvae to the alga H. akashiwo differs depending on the developmental stage. The embryos and the eye-spot larvae of A. irradians are more sensitive stages to the toxicity of H. akashiwo. Observed effects of H. akashiwo exposure on early development of A. irradians serve to point out to the potential danger of this alga for scallop populations. The possible toxicological mechanisms of H. akashiwo on the scallop embryos and larvae are discussed. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Effects of insulin upon glucose metabolism were investigated in chick embryos explanted in vitro during the first 30 h of incubation. Insulin stimulated the glucose consumption of the chick gastrula (18 h) and neurula (24 h), but had no effect on the late blastula (0 h:laying) and on the stage of six to eight somites (30 h). The increase in glucose consumption concerned both the embryonic area pellucida (AP) and extraembryonic area opaca (AO). AP responded to a greater extent (50%) and at a lower range of concentrations (0.1-1.0 ng/ml) than AO (30%; 1-100 ng/ml). Insulin had no effect on the oxygen consumption of blastoderms, whereas it stimulated the aerobic lactate production (approximately 70% of the additional glucose consumption was converted to lactate). The nanomolar range of stimulating concentrations suggests that insulin has a specific effect in the chick embryo, and that it could modulate glucose metabolism in ovo as well. The transient sensitivity of the embryo to insulin is discussed in relation to behavior of mesodermal cells.
Resumo:
RNA binding proteins regulate gene expression at the posttranscriptional level and play important roles in embryonic development. Here, we report the cloning and expression of Samba, a Xenopus hnRNP that is maternally expressed and persists at least until tail bud stages. During gastrula stages, Samba is enriched in the dorsal regions. Subsequently, its expression is elevated only in neural and neural crest tissues. In the latter, Samba expression overlaps with that of Slug in migratory neural crest cells. Thereafter, Samba is maintained in the neural crest derivatives, as well as other neural tissues, including the anterior and posterior neural tube and the eyes. Overexpression of Samba in the animal pole leads to defects in neural crest migration and cranial cartilage development. Thus, Samba encodes a Xenopus hnRNP that is expressed early in neural and neural crest derivatives and may regulate crest cells migratory behavior. Developmental Dynamics 238:204-209, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)