980 resultados para gaseous pollutants


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes, an international specialty conference sponsored by the American Association for Aerosol Research, was held to address key uncertainties in our understanding of adverse health effects related to air pollution and to integrate and disseminate results from recent scientific studies that cut across a range of air pollution-related disciplines. The Conference addressed the science of air pollution and health within a multipollutant framework (herein "multipollutant" refers to gases and particulate matter mass, components, and physical properties), focusing on five key science areas: sources, atmospheric sciences, exposure, dose, and health effects. Eight key policy-relevant science questions integrated across various parts of the five science areas and a ninth question regarding findings that provide policy-relevant insights served as the framework for the meeting. Results synthesized from this Conference provide new evidence, reaffirm past findings, and offer guidance for future research efforts that will continue to incrementally advance the science required for reducing uncertainties in linking sources, air pollutants, human exposure, and health effects. This paper summarizes the Conference findings organized around the science questions. A number of key points emerged from the Conference findings. First, there is a need for greater focus on multipollutant science and management approaches that include more direct studies of the mixture of pollutants from sources with an emphasis on health studies at ambient concentrations. Further, a number of research groups reaffirmed a need for better understanding of biological mechanisms and apparent associations of various health effects with components of particulate matter (PM), such as elemental carbon, certain organic species, ultrafine particles, and certain trace elements such as Ni, V, and Fe(II), as well as some gaseous pollutants. Although much debate continues in this area, generation of reactive oxygen species induced by these and other species present in air pollution and the resulting oxidative stress and inflammation were reiterated as key pathways leading to respiratory and cardiovascular outcomes. The Conference also underscored significant advances in understanding the susceptibility of populations, including the role of genetics and epigenetics and the influence of socioeconomic and other confounding factors and their synergistic interactions with air pollutants. Participants also pointed out that short-and long-term intervention episodes that reduce pollution from sources and improve air quality continue to indicate that when pollution decreases so do reported adverse health effects. In the limited number of cases where specific sources or PM2.5 species were included in investigations, specific species are often associated with the decrease in effects. Other recent advances for improved exposure estimates for epidemiological studies included using new technologies such as microsensors combined with cell phone and integrated into real-time communications, hybrid air quality modeling such as combined receptor-and emission-based models, and surface observations used with remote sensing such as satellite data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP associated with short-term exposure to summer ozone. At the second stage, we specify a class of distributions for the true city-specific relative rates to estimate an overall effect by taking into account the variability within and across cities. We perform the calculations with respect to several random effects distributions (normal, t-student, and mixture of normal), thus relaxing the common assumption of a two-stage normal-normal hierarchical model. We assess the sensitivity of the results to: 1) lag structure for ozone exposure; 2) degree of adjustment for long-term trends; 3) inclusion of other pollutants in the model;4) heat waves; 5) random effects distributions; and 6) prior hyperparameters. On average across cities, we found that a 10ppb increase in summer ozone level for every day in the previous week is associated with 1.25 percent increase in CVDRESP mortality (95% posterior regions: 0.47, 2.03). The relative rate estimates are also positive and statistically significant at lags 0, 1, and 2. We found that associations between summer ozone and CVDRESP mortality are sensitive to the confounding adjustment for PM_10, but are robust to: 1) the adjustment for long-term trends, other gaseous pollutants (NO_2, SO_2, and CO); 2) the distributional assumptions at the second stage of the hierarchical model; and 3) the prior distributions on all unknown parameters. Bayesian hierarchical distributed lag models and their application to the NMMAPS data allow us estimation of an acute health effect associated with exposure to ambient air pollution in the last few days on average across several locations. The application of these methods and the systematic assessment of the sensitivity of findings to model assumptions provide important epidemiological evidence for future air quality regulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inefficiencies during the management of healthcare waste can give rise to undesirable health effects such as transmission of infections and environmental pollution within and beyond the health facilities generating these wastes. Factors such as prevalence of diseases, conflicts, and the efflux of intellectual capacity make low income countries more susceptible to these adverse health effects. The purpose of this systematic review was to describe the effectiveness of interventions geared towards better managing the generation, collection, transport, treatment and disposal of medical waste, as they have been applied in lower and middle income countries.^ Using a systematic search strategy and evaluation of study quality, this study reviewed the literature for published studies on healthcare waste management interventions carried out in developing countries, specifically the low and lower middle income countries from year 2000 to the current year. From an initially identified set of 829 studies, only three studies ultimately met all inclusion, exclusion and high quality criteria. A multi component intervention in Syrian Arab Republic, conducted in 2007 was aimed at improving waste segregation practice in a hospital setting. There was an increased use of segregation boxes and reduced rates of sharps injury among staff as a result of the intervention. Another study, conducted in 2008, trained medical students as monitors of waste segregation practice in an Indian teaching hospital. There was improved practice in wards and laboratories but not in the intensive care units. The third study, performed in 2008 in China, consisted of modification of the components of a medical waste incinerator to improve efficiency and reduce stack emissions. Gaseous pollutants emitted, except polychlorodibenzofurans (PCDF) were below US EPA permissible exposure limits. Heavy metal residues in the fly ash remained unchanged.^ Due to the paucity of well-designed studies, there is insufficient evidence in literature to conclude on the effectiveness of interventions in low income settings. There is suggestive but insufficient evident that multi-component interventions aimed at improving waste segregation through behavior modification, provision of segregation tools and training of monitors are effective in low income settings.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Error condition detected Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H-2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30-35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Airborne particulate matter (PM) is of environmental concern not only in urban but also rural areas that are easily inhalable and have been considered responsible, together with gaseous pollutants, for possible health effects. The objectives of this research study is to generate an extensive data set for ambient PM collected at Belle Glade and Delray Beach that ultimately was used together with published source profiles to predict the contributions of major sources to the overall airborne particle burden in Belle Glade and Delray Beach. ^ The size segregated particle sampling was conducted for one entire year. The samples collected during the months of January and May were further subjected to chemical analysis for organic compounds by Gas Chromatography-Mass Spectrometry. Additional, PM10 sampling was conducted simultaneously with size segregated particle sampling during January and May to analyze for trace elements using Instrumental Neutron Activation Analysis technique. Elements and organic marker compounds were used in Chemical Mass Balance modeling to determine the major source contribution to the ambient fine particle matter burden. ^ Size segregated particle distribution results show bimodal in both sampling sites. Sugarcane pre-harvest burning in the rural site elevated PM10 concentration by about 30% during the sugarcane harvest season compared to sugarcane growing season. Sea salt particles and Saharan dust particles accounted for the external sources. ^ The results of trace element analysis show that Al, Ca, Cs, Eu, Lu, Nd, Sc, Sm, Th, and Yb are more abundant at the rural sampling site. The trace elements Ba, Br, Ce, Cl, Cr, Fe, Gd, Hf, Na, Sb, Ta, V, and W show high abundance at the urban site due to anthropogenic activities except for Na and Cl, which are from sea salt spray. On the other hand, size segregated trace organic compounds measurements show that organic compounds mainly from combustion process were accumulated in PM0.95. ^ In conclusion, major particle sources were determined by the CMB8.2 software as follows: road dust, sugarcane leaf burning, diesel-powered and gasoline powered vehicle exhaust, leaf surface abrasion particles, and a very small fraction of meat cooking. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is part of research on new materials for catalysis and gas sensors more active, sensitive, selective. The aim of this thesis was to develop and characterize cobalt ferrite in different morphologies, in order to study their influence on the electrical response and the catalytic activity, and to hierarchize these grains for greater diffusivity of gas in the material. The powders were produced via hydrothermal and solvothermal, and were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy (electron diffraction, highresolution simulations), and energy dispersive spectroscopy. The catalytic and electrical properties were tested in the presence of CO and NO2 gases, the latter in different concentrations (1-100 ppm) and at different temperatures (room temperature to 350 ° C). Nanooctahedra with an average size of 20 nm were obtained by hydrothermal route. It has been determined that the shape of the grains is mainly linked to the nature of the precipitating agent and the presence of OH ions in the reaction medium. By solvothermal method CoFe2O4 spherical powders were prepared with grain size of 8 and 20 nm. CoFe2O4 powders exhibit a strong response to small amounts of NO2 (10 ppm to 200 ° C). The nanooctahedra have greater sensitivity than the spherical grains of the same size, and have smaller response time and shorter recovery times. These results were confirmed by modeling the kinetics of response and recovery of the sensor. Initial tests of catalytic activity in the oxidation of CO between temperatures of 100 °C and 350 °C show that the size effect is predominant in relation the effect of the form with respect to the conversion of the reaction. The morphology of the grains influence the rate of reaction. A higher reaction rate is obtained in the presence of nanooctahedra. In order to improve the detection and catalytic properties of the material, we have developed a methodology for hierarchizing grains which involves the use of carbonbased templates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the summary of the key objectives, instrumentation and logistic details, goals, and initial scientific findings of the European Marie Curie Action SAPUSS project carried out in the western Mediterranean Basin (WMB) during September-October in autumn 2010. The key SAPUSS objective is to deduce aerosol source characteristics and to understand the atmospheric processes responsible for their generations and transformations - both horizontally and vertically in the Mediterranean urban environment. In order to achieve so, the unique approach of SAPUSS is the concurrent measurements of aerosols with multiple techniques occurring simultaneously in six monitoring sites around the city of Barcelona (NE Spain): a main road traffic site, two urban background sites, a regional background site and two urban tower sites (150 m and 545 m above sea level, 150 m and 80 m above ground, respectively). SAPUSS allows us to advance our knowledge sensibly of the atmospheric chemistry and physics of the urban Mediterranean environment. This is well achieved only because of both the three dimensional spatial scale and the high sampling time resolution used. During SAPUSS different meteorological regimes were encountered, including warm Saharan, cold Atlantic, wet European and stagnant regional ones. The different meteorology of such regimes is herein described. Additionally, we report the trends of the parameters regulated by air quality purposes (both gaseous and aerosol mass concentrations); and we also compare the six monitoring sites. High levels of traffic-related gaseous pollutants were measured at the urban ground level monitoring sites, whereas layers of tropospheric ozone were recorded at tower levels. Particularly, tower level night-time average ozone concentrations (80 +/- 25 mu g m(-3)) were up to double compared to ground level ones. The examination of the vertical profiles clearly shows the predominant influence of NOx on ozone concentrations, and a source of ozone aloft. Analysis of the particulate matter (PM) mass concentrations shows an enhancement of coarse particles (PM2.5-10) at the urban ground level (+64 %, average 11.7 mu g m(-3)) but of fine ones (PM1) at urban tower level (+28 %, average 14.4 mu g m(-3)). These results show complex dynamics of the size-resolved PM mass at both horizontal and vertical levels of the study area. Preliminary modelling findings reveal an underestimation of the fine accumulation aerosols. In summary, this paper lays the foundation of SAPUSS, an integrated study of relevance to many other similar urban Mediterranean coastal environment sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present dissertation is devoted to the systematic approach to the development of organic toxic and refractory pollutants abatement by chemical decomposition methods in aqueous and gaseous phases. The systematic approach outlines the basic scenario of chemical decomposition process applications with a step-by-step approximation to the most effective result with a predictable outcome for the full-scale application, confirmed by successful experience. The strategy includes the following steps: chemistry studies, reaction kinetic studies in interaction with the mass transfer processes under conditions of different control parameters, contact equipment design and studies, mathematical description of the process for its modelling and simulation, processes integration into treatment technology and its optimisation, and the treatment plant design. The main idea of the systematic approach for oxidation process introduction consists of a search for the most effective combination between the chemical reaction and the treatment device, in which the reaction is supposed to take place. Under this strategy,a knowledge of the reaction pathways, its products, stoichiometry and kinetics is fundamental and, unfortunately, often unavailable from the preliminary knowledge. Therefore, research made in chemistry on novel treatment methods, comprisesnowadays a substantial part of the efforts. Chemical decomposition methods in the aqueous phase include oxidation by ozonation, ozone-associated methods (O3/H2O2, O3/UV, O3/TiO2), Fenton reagent (H2O2/Fe2+/3+) and photocatalytic oxidation (PCO). In the gaseous phase, PCO and catalytic hydrolysis over zero valent ironsare developed. The experimental studies within the described methodology involve aqueous phase oxidation of natural organic matter (NOM) of potable water, phenolic and aromatic amino compounds, ethylene glycol and its derivatives as de-icing agents, and oxygenated motor fuel additives ¿ methyl tert-butyl ether (MTBE) ¿ in leachates and polluted groundwater. Gas-phase chemical decomposition includes PCO of volatile organic compounds and dechlorination of chlorinated methane derivatives. The results of the research summarised here are presented in fifteenattachments (publications and papers submitted for publication and under preparation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing evidence of a causal link between airborne particles and ill health and this study monitored the exposure to both airborne particles and the gas phase contaminants of environmental tobacco smoke (ETS) in a nightclub. The present study followed a number of pilot studies in which the human exposure to airborne particles in a nightclub was assessed and the spatio-temporal distribution of gas phase pollutants was evaluated in restaurants and pubs. The work reported here re-examined the nightclub environment and utilized concurrent and continuous monitoring using optical scattering samplers to measure particulates (PM10) together with multi-gas analysers. The analysis illustrated the highly episodic nature of both gaseous and particulate concentrations in both the dance floor and in the bar area but levels were well below the maximum recommended exposure levels. Short-term exposure to high concentrations may however be relevant when considering the possible toxic effects on biological systems. The results give an indication of the problems associated with achieving acceptable indoor air quality (IAQ) in a complex space and identified some of the problems inherent in the design and operation of ventilation systems for such spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-high-energy cosmic rays (UHECRs), with energies above similar to 6 x 10(19) eV, seem to show a weak correlation with the distribution of matter relatively near to us in the universe. It has earlier been proposed that UHECRs could be accelerated in either the nucleus or the outer lobes of the nearby radio galaxy Cen A. We show that UHECR production at a spatially intermediate location about 15 kpc northeast from the nucleus, where the jet emerging from the nucleus is observed to strike a large star-forming shell of gas, is a plausible alternative. A relativistic jet is capable of accelerating lower energy heavy seed cosmic rays (CRs) to UHECRs on timescales comparable to the time it takes the jet to pierce the large gaseous cloud. In this model, many CRs arising from a starburst, with a composition enhanced in heavy elements near the knee region around PeV, are boosted to ultra-high energies by the relativistic shock of a newly oriented jet. This model matches the overall spectrum shown by the Auger data and also makes a prediction for the chemical composition as a function of particle energy. We thus predict an observable anisotropy in the composition at high energy in the sense that lighter nuclei should preferentially be seen toward the general direction of Cen A. Taking into consideration the magnetic field models for the Galactic disk and a Galactic magnetic wind, this scenario may resolve the discrepancy between HiRes and Auger results concerning the chemical composition of UHECRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO(2) supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH(4)) flux, direct CO(2) and CH(4) fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO(2) concentrations ranged from 6,491 to 14,976 mu atm and directly-measured stream CO(2) outgassing flux was 5,994 +/- A 677 g C m(-2) y(-1) of stream surface. Stream pCH(4) concentrations ranged from 291 to 438 mu atm and measured stream CH(4) outgassing flux was 987 +/- A 221 g C m(-2) y(-1). Despite high flux rates from the stream surface, the small area of stream itself (970 m(2), or 0.007% of watershed area) led to small directly-measured annual fluxes of CO(2) (0.44 +/- A 0.05 g C m(2) y(-1)) and CH(4) (0.07 +/- A 0.02 g C m(2) y(-1)) per unit watershed land area. Measured fluvial export of DIC (0.78 +/- A 0.04 g C m(-2) y(-1)), DOC (0.16 +/- A 0.03 g C m(-2) y(-1)) and coarse plus fine particulate C (0.001 +/- A 0.001 g C m(-2) y(-1)) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m(-2) y(-1) as CO(2) outgassing, 11.29 g C m(-2) y(-1) as fluvial DIC and 0.64 g C m(-2) y(-1) as fluvial DOC. Outgassing fluxes were somewhat lower than the 40-50 g C m(-2) y(-1) reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 +/- A 147 g C m(-2) y(-1)), but total losses of C transported by water comprised up to about 20% of the +/- A 150 g C m(-2) (+/- 1.5 Mg C ha(-1)) that is exchanged annually across Amazon tropical forest canopies.