945 resultados para gait, analysis, treadmill, COM, vertical, medio, lateral, displacement
Balancing deceit and disguise: How to successfully fool the defender in a 1 vs. 1 situation in rugby
Resumo:
Suddenly changing direction requires a whole body reorientation strategy. In sporting duels such as an attacker vs. a defender in rugby, successful body orientation/reorientation strategies are essential for successful performance. The aim of this study is to examine which biomechanical factors, while taking into account biomechanical constraints, are used by an attacker in a 1 vs. 1 duel in rugby. More specifically we wanted to examine how an attacker tries to deceive the defender yet disguise his intentions by comparing effective deceptive movements (DM+), ineffective deceptive movements (DM-), and non-deceptive movements (NDM). Eight French amateur expert rugby union players were asked to perform DMs and NDMs in a real 1 vs. 1 duel. For each type of movement (DM+, DM-, NDM) different relevant orientation/reorientation parameters, medio-lateral displacement of the center of mass (COM), foot, head, upper trunk, and lower trunk yaw; and upper trunk roll were analyzed and compared. Results showed that COM displacement and lower trunk yaw were minimized during DMs while foot displacement along with head and upper trunk yaw were exaggerated during DMs (DM+ and DM-). This would suggest that the player is using exaggerated body-related information to consciously deceive the defender into thinking he will run in a given direction while minimizing other postural control parameters to disguise a sudden change in posture necessary to modify final running direction. Further analysis of the efficacy of deceptive movements showed how the disguise and deceit strategies needed to be carefully balanced to successfully fool the defender. (C) 2010 Elsevier B.V. All rights reserved.
A preliminary Study of the Effects of medio-Lateral Rotation on Stresses in the Artificial Hip Joint
Resumo:
This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distributions, are applied to these image features to create a suite of gait sequence representations. Despite their simplicity, the resulting feature vectors contain enough information to perform well on human identification and gender classification tasks. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times and under varying lighting environments. Each of the integration methods are investigated for their advantages and disadvantages. An improved gait representation is built based on our experiences with the initial set of gait representations. In addition, we show gender classification results using our gait appearance features, the effect of our heuristic feature selection method, and the significance of individual features.
Resumo:
Vertical stream bed erosion has been studied routinely and its modeling is getting widespread acceptance. The same cannot be said with lateral stream bank erosion since its measurement or numerical modeling is very challenging. Bank erosion, however, can be important to channel morphology. It may contribute significantly to the overall sediment budget of a stream, is a leading cause of channel migration, and is the cause of major channel maintenance. However, combined vertical and lateral channel evolution is seldom addressed. In this study, a new geofluival numerical model is developed to simulate combined vertical and lateral channel evolution. Vertical erosion is predicted with a 2D depth-averaged model SRH-2D, while lateral erosion is simulated with a linear retreat bank erosion model developed in this study. SRH-2D and the bank erosion model are coupled together both spatially and temporally through a common mesh and the same time advancement. The new geofluvial model is first tested and verified using laboratory meander channels; good agreement are obtained between predicted bank retreat and measured data. The model is then applied to a 16-kilometer reach of Chosui River, Taiwan. Vertical and lateral channel evolution during a three-year period (2004 to 2007) is simulated and results are compared with the field data. It is shown that the geofluvial model correctly captures all major erosion and deposition patterns. The new model is shown to be useful for identifying potential erosion sites and providing information for river maintenance planning.
Resumo:
This study aimed to determine the influence of flexibility of the chair seat surface on the pressure peak and on the contact area during the execution of a task of handling an object on the seated position by individuals with spastic cerebral palsy. Ten individuals of both genders with diagnosis of spastic cerebral palsy, who had some control to voluntarily move the body and the upper limbs, participated in this study. Quantification of data was carried out in two experimental situations: (1) execution of a task of fitting with upper limbs, and with the individual placed on an adapted canvas seat; (2) execution of a task of fitting with the participant positioned on an adapted wooden seat. Data obtained were submitted to a non-parametric and descriptive statistical analysis using the Wilcoxon test. Results indicated that the use of canvas seat increased the contact area and decreased the pressure peak and the medio-lateral displacement of centre pressure on the seated posture. © 2011 Informa UK, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This report describes the use of a pressure-sensitive walkway to evaluate an uncommon case of a cat with dorsal luxation of the left scapula and an amputated right forelimb. The findings suggest that limb amputation induced load redistribution mostly to the contralateral forelimb despite the scapular luxation.