996 resultados para fuzzy cyclic contractive maps


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The new computing paradigm known as cognitive computing attempts to imitate the human capabilities of learning, problem solving, and considering things in context. To do so, an application (a cognitive system) must learn from its environment (e.g., by interacting with various interfaces). These interfaces can run the gamut from sensors to humans to databases. Accessing data through such interfaces allows the system to conduct cognitive tasks that can support humans in decision-making or problem-solving processes. Cognitive systems can be integrated into various domains (e.g., medicine or insurance). For example, a cognitive system in cities can collect data, can learn from various data sources and can then attempt to connect these sources to provide real time optimizations of subsystems within the city (e.g., the transportation system). In this study, we provide a methodology for integrating a cognitive system that allows data to be verbalized, making the causalities and hypotheses generated from the cognitive system more understandable to humans. We abstract a city subsystem—passenger flow for a taxi company—by applying fuzzy cognitive maps (FCMs). FCMs can be used as a mathematical tool for modeling complex systems built by directed graphs with concepts (e.g., policies, events, and/or domains) as nodes and causalities as edges. As a verbalization technique we introduce the restriction-centered theory of reasoning (RCT). RCT addresses the imprecision inherent in language by introducing restrictions. Using this underlying combinatorial design, our approach can handle large data sets from complex systems and make the output understandable to humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synchronizing mind maps with fuzzy cognitive maps can help to handle complex problems with many involved stakeholders by taking advantage of human creativity. The proposed approach has the capacity to instantiate cognitive cities by including cognitive computing. A use case in the context of decision-finding (concerning a transportation system) is presented to illustrate the approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a conceptual approach to enhance knowledge management by synchronizing mind maps and fuzzy cognitive maps. The use of mind maps allows taking advantage of human creativity, while the application of fuzzy cognitive maps enables to store information expressed in natural language. By applying cognitive computing, it makes possible to gather and extract relevant information out of a data pool. Therefore, this approach is supposed to give a framework that enhances knowledge management. To demonstrate the potential of this framework, a use case concerning the development of a smart city app is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the widespread applications of electronic learning (e-Learning) technologies to education at all levels, increasing number of online educational resources and messages are generated from the corresponding e-Learning environments. Nevertheless, it is quite difficult, if not totally impossible, for instructors to read through and analyze the online messages to predict the progress of their students on the fly. The main contribution of this paper is the illustration of a novel concept map generation mechanism which is underpinned by a fuzzy domain ontology extraction algorithm. The proposed mechanism can automatically construct concept maps based on the messages posted to online discussion forums. By browsing the concept maps, instructors can quickly identify the progress of their students and adjust the pedagogical sequence on the fly. Our initial experimental results reveal that the accuracy and the quality of the automatically generated concept maps are promising. Our research work opens the door to the development and application of intelligent software tools to enhance e-Learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gradient in the density of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels is necessary for the emergence of several functional maps within hippocampal pyramidal neurons. Here, we systematically analyzed the impact of dendritic atrophy on nine such functional maps, related to input resistance and local/transfer impedance properties, using conductance-based models of hippocampal pyramidal neurons. We introduced progressive dendritic atrophy in a CA1 pyramidal neuron reconstruction through a pruning algorithm, measured all functional maps in each pruned reconstruction, and arrived at functional forms for the dependence of underlying measurements on dendritic length. We found that, across frequencies, atrophied neurons responded with higher efficiency to incoming inputs, and the transfer of signals across the dendritic tree was more effective in an atrophied reconstruction. Importantly, despite the presence of identical HCN-channel density gradients, spatial gradients in input resistance, local/transfer resonance frequencies and impedance profiles were significantly constricted in reconstructions with dendrite atrophy, where these physiological measurements across dendritic locations converged to similar values. These results revealed that, in atrophied dendritic structures, the presence of an ion channel density gradient alone was insufficient to sustain homologous functional maps along the same neuronal topograph. We assessed the biophysical basis for these conclusions and found that this atrophy-induced constriction of functional maps was mediated by an enhanced spatial spread of the influence of an HCN-channel cluster in atrophied trees. These results demonstrated that the influence fields of ion channel conductances need to be localized for channel gradients to express themselves as homologous functional maps, suggesting that ion channel gradients are necessary but not sufficient for the emergence of functional maps within single neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper relies on the study of fixed points and best proximity points of a class of so-called generalized point-dependent (K-Lambda)hybrid p-cyclic self-mappings relative to a Bregman distance Df, associated with a Gâteaux differentiable proper strictly convex function f in a smooth Banach space, where the real functions Lambda and K quantify the point-to-point hybrid and nonexpansive (or contractive) characteristics of the Bregman distance for points associated with the iterations through the cyclic self-mapping.Weak convergence results to weak cluster points are obtained for certain average sequences constructed with the iterates of the cyclic hybrid self-mappings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical relational databases lack proper ways to manage certain real-world situations including imprecise or uncertain data. Fuzzy databases overcome this limitation by allowing each entry in the table to be a fuzzy set where each element of the corresponding domain is assigned a membership degree from the real interval [0…1]. But this fuzzy mechanism becomes inappropriate in modelling scenarios where data might be incomparable. Therefore, we become interested in further generalization of fuzzy database into L-fuzzy database. In such a database, the characteristic function for a fuzzy set maps to an arbitrary complete Brouwerian lattice L. From the query language perspectives, the language of fuzzy database, FSQL extends the regular Structured Query Language (SQL) by adding fuzzy specific constructions. In addition to that, L-fuzzy query language LFSQL introduces appropriate linguistic operations to define and manipulate inexact data in an L-fuzzy database. This research mainly focuses on defining the semantics of LFSQL. However, it requires an abstract algebraic theory which can be used to prove all the properties of, and operations on, L-fuzzy relations. In our study, we show that the theory of arrow categories forms a suitable framework for that. Therefore, we define the semantics of LFSQL in the abstract notion of an arrow category. In addition, we implement the operations of L-fuzzy relations in Haskell and develop a parser that translates algebraic expressions into our implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study on the fuzzy absolutes and related topics. The different kinds of extensions especially compactification formed a major area of study in topology. Perfect continuous mappings always preserve certain topological properties. The concept of Fuzzy sets introduced by the American Cyberneticist L. A Zadeh started a revolution in every branch of knowledge and in particular in every branch of mathematics. Fuzziness is a kind of uncertainty and uncertainty of a symbol lies in the lack of well-defined boundaries of the set of objects to which this symbol belongs. Introduce an s-continuous mapping from a topological space to a fuzzy topological space and prove that the image of an H-closed space under an s-continuous mapping is f-H closed. Here also proved that the arbitrary product fi and sum of  fi of the s-continuous maps fi are also s-continuous. The original motivation behind the study of absolutes was the problem of characterizing the projective objects in the category of compact spaces and continuous functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional quantitative structure-activity relationships (3D-QSAR) were performed for a series of analgesic cyclic imides using the CoMFA and CoMSIA methods. Significant correlation coefficients ( CoMFA, r(2) = 0.95 and q(2) = 0.72; CoMSIA, r(2) = 0.96 and q(2) = 0.76) were obtained, and the generated models were externally validated using test sets. The final QSAR models as well as the information gathered from 3D contour maps should be useful for the design of novel cyclic imides having improved analgesic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the geotechnical standpoint, it is interesting to analyse the soil texture in regions with rough terrain due to its relation with the infiltration and runoff processes and, consequently, the effect on erosion processes. The purpose of this paper is to present a methodology that provides the soil texture spatialization by using Fuzzy logic and Geostatistic. The results were correlated with maps drawn specifically for the study area. The knowledge of the spatialization of soil properties, such as the texture, can be an important tool for land use planning in order to reduce the potential soil losses during rain seasons. (c) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of Spatial Statistics 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image segmentation is the process of subdiving an image into constituent regions or objects that have similar features. In video segmentation, more than subdividing the frames in object that have similar features, there is a consistency requirement among segmentations of successive frames of the video. Fuzzy segmentation is a region growing technique that assigns to each element in an image (which may have been corrupted by noise and/or shading) a grade of membership between 0 and 1 to an object. In this work we present an application that uses a fuzzy segmentation algorithm to identify and select particles in micrographs and an extension of the algorithm to perform video segmentation. Here, we treat a video shot is treated as a three-dimensional volume with different z slices being occupied by different frames of the video shot. The volume is interactively segmented based on selected seed elements, that will determine the affinity functions based on their motion and color properties. The color information can be extracted from a specific color space or from three channels of a set of color models that are selected based on the correlation of the information from all channels. The motion information is provided into the form of dense optical flows maps. Finally, segmentation of real and synthetic videos and their application in a non-photorealistic rendering (NPR) toll are presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial analysis and fuzzy classification techniques were used to estimate the spatial distributions of heavy metals in soil. The work was applied to soils in a coastal region that is characterized by intense urban occupation and large numbers of different industries. Concentrations of heavy metals were determined using geostatistical techniques and classes of risk were defined using fuzzy classification. The resulting prediction mappings identify the locations of high concentrations of Pb, Zn, Ni, and Cu in topsoils of the study area. The maps show that areas of high pollution of Ni and Cu are located at the northeast, where there is a predominance of industrial and agricultural activities; Pb and Zn also occur in high concentrations in the northeast, but the maps also show significant concentrations of Pb and Zn in other areas, mainly in the central and southeastern parts, where there are urban leisure activities and trade centers. Maps were also prepared showing levels of pollution risk. These maps show that (1) Cu presents a large pollution risk in the north-northwest, midwest, and southeast sectors, (2) Pb represents a moderate risk in most areas, (3) Zn generally exhibits low risk, and (4) Ni represents either low risk or no risk in the studied area. This study shows that combining geostatistics with fuzzy theory can provide results that offer insight into risk assessment for environmental pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)