910 resultados para functionalized oligomers
Resumo:
Surgical site infections (SSI) often occur after invasive surgery, which is as a serious health problem, making it important to develop new biomaterials to prevent infections. Spider silk is a natural biomaterial with excellent biocompatibility, low immunogenicity and controllable biodegradability. Through recombinant DNA technology, spider silk-based materials can be bioengineered and functionalized with antimicrobial (AM) peptides 1. The aim of this study is to develop new materials by combining spider silk chimeric proteins with AM properties and silk fibroin extracted from Bombyx mori cocoons to prevent microbial infection. Here, spider silk domains derived from the dragline sequence of the spider Nephila clavipes (6 mer and 15 mer) were fused with the AM peptides Hepcidin and Human Neutrophil peptide 1 (HNP1). The spider silk domain maintained its self-assembly features allowing the formation of beta-sheets to lock in structures without any chemical cross-linking. The AM properties of the developed chimeric proteins showed that 6 mer + HNP1 protein had a broad microbicidal activity against pathogens. The 6 mer + HNP-1 protein was then assembled with different percentages of silk fibroin into multifunctional films. In vitro cell studies with a human fibroblasts cell line (MRC5) showed nontoxic and cytocompatible behavior of the films. The positive cellular response, together with structural properties, suggests that this new fusion protein plus silk fibroin may be good candidates as multifunctional materials to prevent SSI.
Resumo:
A large group of low molecular weight natural compounds that exhibit antimicrobial activity has been isolated from animals and plants during the past two decades. Among them, peptides are the most widespread resulting in a new generation of antimicrobial agents with higher specific activity. In the present study we have developed a new strategy to obtain antimicrobial wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used to determine if antimicrobial peptides penetrated within the films. FTIR analysis was performed to assess the chemical linkages, and antimicrobial assays were performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in this work have provided a higher antimicrobial effect (in the range of 4 log–6 log reduction) for both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human dermal fibroblasts at the concentrations tested.
Resumo:
TNF family ligands and receptors fulfill a number of functions, mainly in the immune system. For example, the ligands BAFF and APRIL control growth and survival of mature Β cells at various stages of differentiation. TNF family ligands usually form homotrimers, but heteromers have also been described for lymphotoxin α1β2 and for BAFF and APRIL. Interestingly, twenty BAFF homotrimers can assemble into virus-like particles coined BAFF 60-mer, which are superior to BAFF 3-mer regarding their ability to signal in primary Β cells. A screen was performed in 293T cells, by co-transfecting differently tagged ligands, to identify six novel heteromers. The specificity of these novel heteromers, however, did not correspond to that of orphan receptors in the TNFR family. Little is known about heteromers of BAFF and APRIL, in particular their receptor-binding specificity and their ability to signal. A method to produce and purify heteromers of defined stoechiometry was developed, and the resulting reagents were used to demonstrate that BAFF2APRIL, like BAFF, binds to all BAFF receptors - namely BAFFR, TACI and Β CM A -, while APRIL2BAFF and APRIL only binds to TACI and BCMA. Heteromers could signal via their cognate receptors, sometimes as potently and sometimes less potently than homomers, depending on the receptors. A promising system to measure the activity of single-chain homo- and heteromers in vivo was set up: it measures mature Β cell rescue upon administration of single-chain ligands into BAFF-ko mice. To tackle the question of the physiological importance of BAFF 60-mer, a point mutation that prevents assembly of mouse BAFF into 60-mer while retaining its ability to form trimers was identified. This mutation (E247K) was introduced by homologous recombination into mouse embryonic stem cells that are now being used to generate knock-in mice. Results obtained in this work will help to better understand the role of various BAFF and APRIL forms that are elevated in a several autoimmune diseases. - Les ligands et récepteurs de la famille du TNF joue un rôle prédominant dans le système immunitaire. Par exemple, les ligands BAFF et APRIL contrôlent la croissance et la survie des cellules Β matures à différents stades de différenciation. Ces ligands existent souvent sous forme d'homotrimères (3-mer), bien que des héteromères aient été décrits pour la lymphotoxine α1β2 et pour BAFF et APRIL. Dans le cas de BAFF, vingt trimères peuvent, telle une particule virale, s'assembler en 60-mer qui surpasse le 3-mer pour signaler dans des cellules Β primaires. Un crible effectué dans des cellules 293T, par co-transfection de ligands différemment marqués, a permis d'identifier six nouveaux heteromères dont la spécificité n'a, hélas, pas correspondu à celle d'un récepteur orphelin de la famille du TNFR. Les connaissances sur la spécificité de liaison aux récepteurs et la capacité à signaler des heteromères de BAFF et d'APRIL sont fragmentaires. Une méthode pour produire et purifier des heteromères "simple chaîne" de stoechiométrie déterminée a été mise au point, et les réactifs ainsi obtenus utilisés pour démontrer que BAFF2APRIL, comme BAFF, lie tous les récepteurs de BAFF - c'est-à-dire BAFFR, TACI et BCMA -, alors qu'APRIL2BAFF et APRIL ne lient que TACI et BCMA. Les héteromères peuvent transmettre des signaux, parfois aussi bien et parfois plus faiblement que les homomères, selon les récepteurs. Un système prometteur pour mesurer l'activité des ligands simple chaîne in vivo a été mis au point. Il mesure la réapparition de cellules Β matures dans des souris déficientes pour BAFF après administration des ligands. Pour s'attaquer à la question de l'importance physiologique du 60-mer de BAFF, ime mutation empêchant l'assemblage en 60-mer sans affecter la capacité à former des trimères a été identifiée. Cette mutation (E247K) a été introduite par recombinaison homologue dans des cellules souches embryonnaires de souris qui sont utilisées pour obtenir des souris déficientes en BAFF 60-mer. Les résultats de ces travaux contribueront à mieux cerner le rôle des différentes formes de BAFF et d'APRIL produites en excès dans plusieurs maladies auto-immunes.
Resumo:
Water-dispersible gold nanoparticles functionalized with paramagnetic gadolinium have been fully characterized, and the NMRD profiles show very high relaxivities up to 1.5 T. Characterization using TEM images and dynamic light scattering indicate a particle size distribution from 2 to 15 nm. The gold cores of the nanoparticles do not contribute significantly to the overall magnetic moment.
Resumo:
Tumor-associated macrophages (TAMs) invade the tumor stroma in many cancers, yet their role is incompletely understood. To visualize and better understand these critical cells in tumor progression, we screened a portfolio of rationally selected, injectable agents to image endogenous TAMs ubiquitously in three different cancer models (colon carcinoma, lung adenocarcinoma, and soft tissue sarcoma). AMTA680, a functionally derivatized magneto-fluorescent nanoparticle, labeled a subset of myeloid cells with an "M2" macrophage phenotype, whereas other neighboring cells, including tumor cells and a variety of other leukocytes, remained unlabeled. We further show that AMTA680-labeled endogenous TAMs are not altered and can be tracked noninvasively at different resolutions and using various imaging modalities, e.g., fluorescence molecular tomography, magnetic resonance imaging, and multiphoton and confocal intravital microscopy. Quantitative assessment of TAM distribution and activity in vivo identified that these cells cluster in delimited foci within tumors, show relatively low motility, and extend cytoplasmic protrusions for prolonged physical interactions with neighboring tumor cells. Noninvasive imaging can also be used to monitor TAM-depleting regimen quantitatively. Thus, AMTA680 or related cell-targeting agents represent appropriate injectable vehicles for in vivo analysis of the tumor microenvironment.
Resumo:
In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application.
Resumo:
Restricted Hartree-Fock 6-31G calculations of electrical and mechanical anharmonicity contributions to the longitudinal vibrational second hyperpolarizability have been carried out for eight homologous series of conjugated oligomers - polyacetylene, polyyne, polydiacetylene, polybutatriene, polycumulene, polysilane, polymethineimine, and polypyrrole. To draw conclusions about the limiting infinite polymer behavior, chains containing up to 12 heavy atoms along the conjugated backbone were considered. In general, the vibrational hyperpolarizabilities are substantial in comparison with their static electronic counterparts for the dc-Kerr and degenerate four-wave mixing processes (as well as for static fields) but not for electric field-induced second harmonic generation or third harmonic generation. Anharmonicity terms due to nuclear relaxation are important for the dc-Kerr effect (and for the static hyperpolarizability) in the σ-conjugated polymer, polysilane, as well as the nonplanar π systems polymethineimine and polypyrrole. Restricting polypyrrole to be planar, as it is in the crystal phase, causes these anharmonic terms to become negligible. When the same restriction is applied to polymethineimine the effect is reduced but remains quantitatively significant due to the first-order contribution. We conclude that anharmonicity associated with nuclear relaxation can be ignored, for semiquantitative purposes, in planar π-conjugated polymers. The role of zero-point vibrational averaging remains to be evaluated
Resumo:
Human cytosolic thymidine kinase (hTK1) has proven to be a suitable target for the noninvasive imaging of cancer cell proliferation using radiolabeled thymidine analogues such as [(18)F]3'-fluoro-3'-deoxythymidine ([(18)F]FLT). A thymidine analogue for single photon emission computed tomography (SPECT), which incorporates the readily available and inexpensive nuclide technetium-99m, would be of considerable practical interest. hTK1 is known to accommodate modification of the structure of the natural substrate thymidine at the positions N3 and C3' and, to a lesser extent, C5. In this work, we used the copper-catalyzed azide-alkyne cycloaddition to synthesize two series of derivatives in which thymidine is functionalized at either the C3' or N3 position with chelating systems suitable for the M(CO)(3) core (M = (99m)Tc, Re). The click chemistry approach enabled complexes with different structures and overall charges to be synthesized from a common precursor. Using this strategy, the first organometallic hTK1 substrates in which thymidine is modified at the C3' position were identified. Phosphorylation of the organometallic derivatives was measured relative to thymidine. We have shown that the influence of the overall charge of the derivatives is dependent on the position of functionalization. In the case of the C3'-functionalized derivatives, neutral and anionic substrates were most readily phosphorylated (20-28% of the value for the parent ligand thymidine), whereas for the N3-functionalized derivatives, cationic and neutral complexes were apparently better substrates for the enzyme (14-18%) than anionic derivatives (9%).
Resumo:
In this present thesis Superparamagnetic Iron Oxide Nanoparticles (SPIONs) with 9 nm in diameter were selected as nanocarriers in order to study their potential application as drug delivery systems. Therefore the aim of the study was to demonstrate the proof of concept by establishing an efficient system of drug delivery, which would be a valuable tool in biomedical applications, such as the treatement of cancer, by reducing the side effects due to administration of a high concentration of therapeutic agents. As demonstrated in a previous study, the uptake of SPIONs by tumoral human cells was enhanced by the presence of amino groups on their surface. The stabilization of SPIONs were then performed and optimized by the coating of poly(vinylalcohol) and poly(vinylalcohol/vinylamine). Such nanoparticles were known as aminoPVA-SPIONs. The toxicity and the inflammatory reaction of aminoPVA-SPIONs were evaluated in order to establish their potentiel use in the human body. The results demonstrated that the human cells were able to invaginate aminoPVA-SPIONS without revealing any toxicity and inflammatory reaction. The analysis by transmission electron microscopy (TEM), scanning electron microscopy (SEM), cryo-TEM, confocal microscopy and histological staining (i.e. Prussian Blue) showed that the iron oxide core of SPIONs were located in the cytoplasm of cells and concentrated in vesicles. The evaluation of the mechanism of uptake of aminoPVA-SPIONs revealed that their uptake by monolayer cell culture was performed via an active mechanism, which was achieved by a clathrin-mediated endocytosis. Consequently, it was suggested that aminoPVA-SPIONs were good candidates as nanocarriers in drug delivery systems, which were able to reach the cytoplasm of cells. Their incubation with three-dimensional models mimicing tissues, such as differentiated rat brain cell-derived aggregates and spheroids, revealed that aminoPVA-SPIONs were able to invade into deep cell layers according to the stage of growth of these models. In the view of these promising results, drug-SPIONs were prepared by the functionalization of aminoPVA-SPIONs via a biological labile chemical bond by one of these three antineoplastic agents, which are widely used in clinical practice: 5-fluorourdine (Fur) (an antimetabolite), or camptothecin (CPT) (a topoisomerase inhibitor) or doxorubicin (DOX) (an anthracycline which interfere with DNA). The results shown that drug-SPIONs were internalized by human melanoma cells, as it was expected due the previous results with aminoPVA-SPIONs, and in addition they were active as anticancer agents, suggesting the efficient release of the drug from the drug-SPIONs. The results with CPT-SPIONs were the most promising, whereas DOX- SPIONs did not demonstrate a prononced activity of DOX. In conclusion, the results demonstrated that functionalized iron oxide nanoparticles are a promising tool in order to deliver therapeutic agents. - Dans le cadre de ce travail de thèse, les nanoparticules superparamagnétiques d'oxyde de fer (SPIONs) ayant un diamètre de 9 nm ont été choisies, afin d'étudier leur éventuelle utilisation dans un système de délivrance d'agents thérapeutiques. Ainsi le but de la thèse est de démontrer la faisabilité de fabriquer un système efficace de délivrance d'agents thérapeutiques, qui serait un outil intéressant dans le cadre d'une utilisation biomédicale, par exemple lors du traitement du cancer, qui pourrait réduire les effets secondaires provoqués par le dosage trop élevé de médicaments. Comme il a été démontré dans une précédente étude, l'invagination des SPIONs par des cellules humaines cancéreuses est améliorée par la présence de groupes fonctionnels amino à leur surface. La stabilisation des SPIONs est ainsi effectuée et optimisée par l'enrobage de poly(vinylalcool) et de (poly(vinylalcool/vinylamine), qui sont connues sous le nom de aminoPVA-SPIONs. La toxicité et la réaction inflammatoire des aminoPVA-SPIONs ont été évaluées dans le but de déterminer leur potentielle utilisation dans le corps humain. Les résultats démontrèrent que les cellules humaines sont capables d'invaginer les aminoPVAS-SPIONs sans induire une réaction toxique ou inflammatoire. L'analyse par la microscopie électronique en transmission électronique (TEM), la microscopie électronique à balayage (SEM), le cryo-microscopie électronique (SEM), la microscopie confocale et la coloration histologique (par ex, le bleu de Prusse) a montré que l'oxyde de fer des SPIONs est localisé dans le cytoplasme des cellules et est concentré dans des vesicules. L'évaluation du méchanisme d'invagination des aminoPVA-SPIONs ont révélé que leur invagination par des monocultures de cellules est effectué par un méchanisme actif, contrôlé par une endocytose induite par les clathrins. Par conséquent, les aminoPVA-SPIONs sont de bons candidats en tant que transporteurs (nanocamers) dans un système de délivrance d'agents thérapeuthique, capable d'atteindre le cytoplasme des cellules. Leur incubation avec des modèles tridimenstionnels imitant les tissues, tels que les aggrégats de cellules de cerveau différenciées et les sphéroïdes, a montré que les aminoPVA-SPIONs sont capable de pénétrer dans les couches profondes des modèles, selon l'état d'avancement de leur croissance. En vue de ces résultats prometteurs, les drug-SPIONs ont été préparés en fonctionalisant les aminoPVA-SPIONs par le biai d'une liaison chimique labile par un des trois agents thérapeutiques, déjà utilisé en pratique : 5-fluorourdine (Fur) (un antimétabolite), or camptothecin (CPT) (un inhibiteur de la topoisomerase) or doxorubicin (DOX) (un anthracycline qui interfère avec le DNA). Les résultats ont montré que les drug-SPIONs sont capable d'être internalisés par les mélanomes, comme il a été attendu d'après les résultats obtenus précédemment avec les aminoPVA-SPIONs, et de plus, les drug-SPIONs sont actifs, ce qui suggère un relargage efficace de l'agent thérapeutique du drug-SPIONs. Les résultats obtenus avec les CPT-SPIONs sont les plus prometteurs, tandis que ceux avec les DOX-SPIONs, ce n'est pas le cas, dont l'activité thérapeutique de DOX n'a pas été aussi efficace. En conclusion, les résultats ont pu démontrer que les nanoparticules d'oxyde de fer fonctionnalisées sont un outil prometteur dans la délivrance d'agents thérapeutiques.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are in clinical use for disease detection by MRI. A major advancement would be to link therapeutic drugs to SPIONs in order to achieve targeted drug delivery combined with detection. In the present work, we studied the possibility of developing a versatile synthesis protocol to hierarchically construct drug-functionalized-SPIONs as potential anti-cancer agents. Our model biocompatible SPIONs consisted of an iron oxide core (9-10 nm diameter) coated with polyvinylalcohols (PVA/aminoPVA), which can be internalized by cancer cells, depending on the positive charges at their surface. To develop drug-functionalized-aminoPVA-SPIONs as vectors for drug delivery, we first designed and synthesized bifunctional linkers of varied length and chemical composition to which the anti-cancer drugs 5-fluorouridine or doxorubicin were attached as biologically labile esters or peptides, respectively. These functionalized linkers were in turn coupled to aminoPVA by amide linkages before preparing the drug-functionalized-SPIONs that were characterized and evaluated as anti-cancer agents using human melanoma cells in culture. The 5-fluorouridine-SPIONs with an optimized ester linker were taken up by cells and proved to be efficient anti-tumor agents. While the doxorubicin-SPIONs linked with a Gly-Phe-Leu-Gly tetrapeptide were cleaved by lysosomal enzymes, they exhibited poor uptake by human melanoma cells in culture.
Resumo:
α-Synuclein aggregation and accumulation in Lewy bodies are implicated in progressive loss of dopaminergic neurons in Parkinson disease and related disorders. In neurons, the Hsp70s and their Hsp40-like J-domain co-chaperones are the only known components of chaperone network that can use ATP to convert cytotoxic protein aggregates into harmless natively refolded polypeptides. Here we developed a protocol for preparing a homogeneous population of highly stable β-sheet enriched toroid-shaped α-Syn oligomers with a diameter typical of toxic pore-forming oligomers. These oligomers were partially resistant to in vitro unfolding by the bacterial Hsp70 chaperone system (DnaK, DnaJ, GrpE). Moreover, both bacterial and human Hsp70/Hsp40 unfolding/refolding activities of model chaperone substrates were strongly inhibited by the oligomers but, remarkably, not by unstructured α-Syn monomers even in large excess. The oligomers acted as a specific competitive inhibitor of the J-domain co-chaperones, indicating that J-domain co-chaperones may preferably bind to exposed bulky misfolded structures in misfolded proteins and, thus, complement Hsp70s that bind to extended segments. Together, our findings suggest that inhibition of the Hsp70/Hsp40 chaperone system by α-Syn oligomers may contribute to the disruption of protein homeostasis in dopaminergic neurons, leading to apoptosis and tissue loss in Parkinson disease and related neurodegenerative diseases.
Resumo:
The role of autophagy and its relationship with apoptosis in Alzheimer disease (AD) pathogenesis is poorly understood. Disruption of autophagy leads to buildup of incompletely digested substrates, amyloid-β (Aβ) peptide accumulation in vacuoles and cell death. Aβ, in turn, has been found to affect autophagy. Thus, Aβ might be part of a loop in which it is both the substrate of altered autophagy and its cause. Given the relevance of different soluble forms of Aβ1-42 in AD, we have investigated whether monomers and oligomers of the peptide have a differential role in causing altered autophagy and cell death. Using differentiated SK-N-BE neuroblastoma cells, we found that monomers hamper the formation of the autophagic BCL2-BECN1/Beclin 1 complex and activate the MAPK8/JNK1-MAPK9/JNK2 pathway phosphorylating BCL2. Monomers also inhibit apoptosis and allow autophagy with intracellular accumulation of autophagosomes and elevation of levels of BECN1 and LC3-II, resulting in an inhibition of substrate degradation due to an inhibitory action on lysosomal activity. Oligomers, in turn, favor the formation of the BCL2-BECN1 complex favoring apoptosis. In addition, they cause a less profound increase in BECN1 and LC3-II levels than monomers without affecting the autophagic flux. Thus, data presented in this work show a link for autophagy and apoptosis with monomers and oligomers, respectively. These studies are likely to help the design of novel disease modifying therapies.
Resumo:
Drug-nanoparticle conjugates: The anticancer drug camptothecin (CPT) was covalently linked at the surface of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) via a linker, allowing drug release by cellular esterases. Nanoparticles were hierarchically built to achieve magnetically-enhanced drug delivery to human cancer cells and antiproliferative activity.The linking of therapeutic drugs to ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) allowing intracellular release of the active drug via cell-specific mechanisms would achieve tumor-selective magnetically-enhanced drug delivery. To validate this concept, we covalently attached the anticancer drug camptothecin (CPT) to biocompatible USPIOs (iron oxide core, 9-10 nm; hydrodynamic diameter, 52 nm) coated with polyvinylalcohol/polyvinylamine (PVA/aminoPVA). A bifunctional, end-differentiated dicarboxylic acid linker allowed the attachment of CPT to the aminoPVA as a biologically labile ester substrate for cellular esterases at one end, and as an amide at the other end. These CPT-USPIO conjugates exhibited antiproliferative activity in vitro against human melanoma cells. The intracellular localization of CPT-USPIOs was confirmed by transmission electron microscopy (iron oxide core), suggesting localization in lipid vesicles, and by fluorescence microscopy (CPT). An external static magnetic field applied during exposure increased melanoma cell uptake of the CPT-USPIOs.
Resumo:
The objective of this work was to obtain organic compounds similar to the ones found in the organic matter of anthropogenic dark earth of Amazonia (ADE) using a chemical functionalization procedure on activated charcoal, as well as to determine their ecotoxicity. Based on the study of the organic matter from ADE, an organic model was proposed and an attempt to reproduce it was described. Activated charcoal was oxidized with the use of sodium hypochlorite at different concentrations. Nuclear magnetic resonance was performed to verify if the spectra of the obtained products were similar to the ones of humic acids from ADE. The similarity between spectra indicated that the obtained products were polycondensed aromatic structures with carboxyl groups: a soil amendment that can contribute to soil fertility and to its sustainable use. An ecotoxicological test with Daphnia similis was performed on the more soluble fraction (fulvic acids) of the produced soil amendment. Aryl chloride was formed during the synthesis of the organic compounds from activated charcoal functionalization and partially removed through a purification process. However, it is probable that some aryl chloride remained in the final product, since the ecotoxicological test indicated that the chemical functionalized soil amendment is moderately toxic.
Resumo:
Members of the histone-like nucleoid structuring protein (H-NS) family play roles both as architectural proteins and as modulators of gene expression in Gram-negative bacteria. The H-NS protein participates in modulatory processes that respond to environmental changes in osmolarity, pH, or temperature. H-NS oligomerization is essential for its activity. Structural models of different truncated forms are available. However, high-resolution structural details of full-length H-NS and its DNA-bound state have largely remained elusive. We report on progress in characterizing the biologically active H-NS oligomers with solid-state NMR. We compared uniformly ((13)C,(15)N)-labeled ssNMR preparations of the isolated N-terminal region (H-NS 1-47) and full-length H-NS (H-NS 1-137). In both cases, we obtained ssNMR spectra of good quality and characteristic of well-folded proteins. Analysis of the results of 2D and 3D (13)C-(13)C and (15)N-(13)C correlation experiments conducted at high magnetic field led to assignments of residues located in different topological regions of the free full-length H-NS. These findings confirm that the structure of the N-terminal dimerization domain is conserved in the oligomeric full-length protein. Small changes in the dimerization interface suggested by localized chemical shift variations between solution and solid-state spectra may be relevant for DNA recoginition.